Convergence of riemannian manifolds

Stefan Peters

Compositio Mathematica (1987)

  • Volume: 62, Issue: 1, page 3-16
  • ISSN: 0010-437X

How to cite

top

Peters, Stefan. "Convergence of riemannian manifolds." Compositio Mathematica 62.1 (1987): 3-16. <http://eudml.org/doc/89833>.

@article{Peters1987,
author = {Peters, Stefan},
journal = {Compositio Mathematica},
keywords = {limits of Riemannian structures; diameter; volume; Riemannian manifolds},
language = {eng},
number = {1},
pages = {3-16},
publisher = {Martinus Nijhoff Publishers},
title = {Convergence of riemannian manifolds},
url = {http://eudml.org/doc/89833},
volume = {62},
year = {1987},
}

TY - JOUR
AU - Peters, Stefan
TI - Convergence of riemannian manifolds
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 62
IS - 1
SP - 3
EP - 16
LA - eng
KW - limits of Riemannian structures; diameter; volume; Riemannian manifolds
UR - http://eudml.org/doc/89833
ER -

References

top
  1. 1 M. Berger: Sur les variétés Riem. pincées juste au-dessous de 1/4. Ann. Inst. Fourier (Grenoble) 33 (1983) 135-150. Zbl0497.53044MR699491
  2. 2 D. Brittain: A diameter pinching theorem for positive Ricci curvature, to appear. 
  3. 3 P. Buser, H. Karcher: Gromov's almost flat manifolds. Astérisque81 (1981). Zbl0459.53031MR619537
  4. 4 I. Chavel (ed.): Differential geometry and complex analysis, a volume dedicated to the memory of H.E. Rauch. Berlin (1985). Zbl0561.00010MR780028
  5. 5 J. Cheeger: Finiteness theorems for Riemannian manifolds. Am. J. of Math.92 (1970) 61-74. Zbl0194.52902MR263092
  6. 6 D. DeTurck, J. Kazdan: Some regularity theorems in Riem. Geom. Ann. Sc. Éc. Norm. Sup., 4e sér., 14 (1981) 249-260. Zbl0486.53014MR644518
  7. 7 M. Gromov: Structures métriques pour les variétés Riem. Réd. par J. Lafontaine et P. Pansu, Paris (1981). Zbl0509.53034MR682063
  8. 8 J. Jost, H. Karcher: Geom. Methoden zur Gewinnung von a-priori-Schranken für harmonische Abb. Man. Math.40 (1982) 27-77. Zbl0502.53036MR679120
  9. 9 H. Karcher: Riemannian center of mass and mollifier smoothing. Comm. pure and appl. math.30 (1977) 509-541. Zbl0354.57005MR442975
  10. 10 A. Katsuda: Gromov's convergence theorem and its application, to appear in Nagoya Math. J. Zbl0587.53043
  11. 11 P. Pansu: Effondrement des variétés riemanniennes, d'après J. Cheeger et M. Gromov. Astérisque121 (1985). Zbl0551.53020MR768954
  12. 12 S. Peters: Cheeger's finiteness theorem for diffeomorphism classes of Riem. mfs. J. reine ang. Math.349 (1984) 77-82. Zbl0524.53025MR743966
  13. 13 T. Sakai: On continuity of injectivity radius function. Math. J. Okayama Univ.25 (1983) 91-97. Zbl0525.53053MR701970
  14. 14 T. Sakai: Comparison and finiteness theorems in Riemannian geometry. Geometry of geodesics and related topics. Adv. Studies in Pure M.3 (1984) 125-181. Zbl0578.53028MR758652
  15. 15 Y. Shikata: On a distance function on the set of differentiable structures. Osaka J. Math.3 (1966) 65-79. Zbl0168.44301MR202149
  16. 16 T.J. Willmore, N. Hitchin (eds): Global Riemannian Geometry. Chichester (1984). Zbl0614.00017MR757199
  17. 17 Y. Yamaguchi: On the number of diffeomorphism classes in a certain class of Riemannian mfs, preprint University of Tsukuba. Zbl0566.53038
  18. 18 R. Greene, H. Wu: Lipschitz convergence of Riemannian manifolds, to appear in Pacific J. of Math. Zbl0646.53038MR917868
  19. 19 I.G. Nikolaev: Smoothness of the metric of spaces with two-sided bounded Aleksandrov curvature, Siberian Math. J.24 (1983) 247-263. Zbl0547.53011MR695295
  20. 20 C. Pugh: The C1,1-conclusion in Gromov's theory, preprint U. Calif.Berkeley 

Citations in EuDML Documents

top
  1. Luis Guijarro, Peter Petersen, Rigidity in non-negative curvature
  2. Gilles Courtois, La première valeur propre non nulle du laplacien des p - formes
  3. Deane Yang, L p pinching and compactness theorems for compact riemannian manifolds
  4. Conrad Plaut, A metric characterization of manifolds with boundary
  5. Laurent Bessières, Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes
  6. M. Troyanov, Un principe de concentration-compacité pour les suites de surfaces Riemanniennes
  7. Deane Yang, Convergence of riemannian manifolds with integral bounds on curvature. I
  8. Shigeru Kodani, Convergence theorem for riemannian manifolds with boundary
  9. Sylvestre Gallot, Volumes, courbure de Ricci et convergence des variétés

NotesEmbed ?

top

You must be logged in to post comments.