Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically ,
Compositio Mathematica (1990)
- Volume: 75, Issue: 2, page 219-230
- ISSN: 0010-437X
Access Full Article
topHow to cite
topDelanoë, Philippe. "Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$." Compositio Mathematica 75.2 (1990): 219-230. <http://eudml.org/doc/90035>.
@article{Delanoë1990,
author = {Delanoë, Philippe},
journal = {Compositio Mathematica},
keywords = {Monge-Ampère operator; Ricci curvature; Calabi's conjecture; Kähler asymptotically -manifolds},
language = {eng},
number = {2},
pages = {219-230},
publisher = {Kluwer Academic Publishers},
title = {Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb \{C\}^n$, $n > 2$},
url = {http://eudml.org/doc/90035},
volume = {75},
year = {1990},
}
TY - JOUR
AU - Delanoë, Philippe
TI - Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 75
IS - 2
SP - 219
EP - 230
LA - eng
KW - Monge-Ampère operator; Ricci curvature; Calabi's conjecture; Kähler asymptotically -manifolds
UR - http://eudml.org/doc/90035
ER -
References
top- 1 R.L. Bishop and S.I. Goldberg, On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc.16 (1965), 119-122. Zbl0125.39403MR172221
- 2 E. Calabi, The space of Kähler metrics, Proc. Internat. Congress Math. Amsterdam (1954), vol. 2, 206-207.
- 3 E. Calabi, A construction of nonhomogeneous Einstein metrics, Proc. Amer. Math. Soc.27 (1975), 17-24. Zbl0309.53043MR379912
- 4 A. Chaljub-Simon and Y. Choquet-Bruhat, Problèmes elliptiques du second ordre sur une variété euclidienne à l'infini, Ann. Fac. Sc. Toulouse1 (1978), 9-25. Zbl0411.35044MR533596
- 5 P. Delanoë, Analyse asymptotiquement euclidienne de l'opérateur de Monge-Ampère réel, preprint Nice (1988).
- 6 P. Delanoë, Partial decay on simple manifolds, Preprint Université de Nice (1990). Zbl0714.35027MR1172619
- 7 P. Delanoë, Local inversion of elliptic problems on compact manifolds, to appear in Mathematica Japonica, Vol. 35 (1990). Zbl0717.35025MR1067866
- 8 P. Delanoë, Obstruction to prescribed positive Ricci curvature, to appear in Pacific J. Math. Zbl0676.53050MR1091527
- 9 G. de Rham, Variétés différentiables, HermannParis (1960), Actualités Sc. et Industr. 1222. Zbl0089.08105
- 10 D DeTurck, Metrics with prescribed Ricci curvature, Seminar on Differential Geometry, Edit. S. T. Yau, Annals of Math. St. 102, Princeton Univ. Press (1982), 525-537. Zbl0478.53031MR645758
- 11 D DeTurck and N. Koiso, Uniqueness and non-existence of metrics with prescribed Ricci curvature, Ann. I. H. P. Anal. non lin.1 (1984), 351-359. Zbl0556.53026MR779873
- 12 A. Jeune, Un analogue du théorème de Calabi-Yau sur Cn, n > 2, Preprint (1990).
- 13 J.L. Kazdan, Prescribing the curvature of a Riemannian manifold, Amer. Math. Soc. CBMS Regional Conf.57 (1985). Zbl0561.53048MR787227
- 14 K. Kodaira, Harmonic fields in Riemannian geometry (generalized potential theory), Ann. of Math.50 (1949), 587-665. Zbl0034.20502MR31148
- 15 K. Kodaira and J. Morrow, Complex manifolds, Holt Rinehart & Winston (1971). Zbl0325.32001MR302937
- 16 A. Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme, Masson, Paris (1955). Zbl0065.20704
- 17 R. Lockhart, Fredholm, Hodge and Liouville theorems on noncompact manifolds, Trans. Amer. Math. Soc.301 (1987), 1-35. Zbl0623.58019MR879560
- 18 N. Mok, Y.-T. Siu and S.-T. Yau, The Poincaré-Lelong equation on complete Kähler manifolds, Compositio Math. 44 (1981), 183-218. Zbl0531.32007MR662462
- 19 R. Schoen and S.-T. Yau, Complete three dimensional manifolds with positive Ricci and scalar curvature, Seminar on Differential Geometry, Edit. S.T. Yau, Annals of Math. St. 102, Princeton Univ. Press (1982), 209-228. Zbl0481.53036MR645740
- 20 S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math.XXXI (1978), 339-411. Zbl0369.53059MR480350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.