The Poincaré-Lelong equation on complete Kähler manifolds
Ngaiming Mok; Yum-Tong Siu; Shing-Tung Yau
Compositio Mathematica (1981)
- Volume: 44, Issue: 1-3, page 183-218
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMok, Ngaiming, Siu, Yum-Tong, and Yau, Shing-Tung. "The Poincaré-Lelong equation on complete Kähler manifolds." Compositio Mathematica 44.1-3 (1981): 183-218. <http://eudml.org/doc/89516>.
@article{Mok1981,
author = {Mok, Ngaiming, Siu, Yum-Tong, Yau, Shing-Tung},
journal = {Compositio Mathematica},
keywords = {Poincare-Lelong equation; complete Kähler manifold; growth condition on current; Harnack inequality; isometry},
language = {eng},
number = {1-3},
pages = {183-218},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The Poincaré-Lelong equation on complete Kähler manifolds},
url = {http://eudml.org/doc/89516},
volume = {44},
year = {1981},
}
TY - JOUR
AU - Mok, Ngaiming
AU - Siu, Yum-Tong
AU - Yau, Shing-Tung
TI - The Poincaré-Lelong equation on complete Kähler manifolds
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 44
IS - 1-3
SP - 183
EP - 218
LA - eng
KW - Poincare-Lelong equation; complete Kähler manifold; growth condition on current; Harnack inequality; isometry
UR - http://eudml.org/doc/89516
ER -
References
top- [1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami operator on complex manifolds, Publ. Math. Inst. Hautes Etudes Sci.25 (1965), 81-130. Zbl0138.06604MR175148
- [2] E. Bombieri and E. Giusti, Harnack's inequality for elliptic differential equations on minimal surfaces, Inv. math.15 (1972), 24-46. Zbl0227.35021MR308945
- [3] J. Cheeger and D. Gromoll, The structure of complete manifolds of non-negative curvature, Bull. Am. Math. Soc.74(6), 413-433. Zbl0169.24101MR232310
- [4] S.Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. Vol.28 (1975), 333-354. Zbl0312.53031MR385749
- [5] S.S. Chern, H. Levine, and L. Nirenberg, Intrinsic norms on a complex manifold, Global analysis, (Papers in honor of K. Kodaira), Tokyo- University of Tokyo Press1969, 119-139. Zbl0202.11603MR254877
- [6] C. Croke, Some isoperimetric inequalities and consequences, to appear in Ann. Sci. Ec. Norm. Sup. Pisa.
- [7] R.E. Greene and H. Wu, Function Theory on Manifolds which Possess a Pole, Vol. 669. Springer-Verlag, Berlin- Heidelberg-New York, 1979. Zbl0414.53043MR521983
- [8] G.M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys32, 3 (1977), 59-130. Zbl0382.35038MR454067
- [9] L. Hörmander, L2-estimates and existence theorems for the ∂-operator, Acta Math.113 (1965), 89-152. Zbl0158.11002
- [10] A. Huber, On subharmonic functions and differential geometry in the large, Comm. Math. Helv.32 (1957), 13-72. Zbl0080.15001MR94452
- [11] P. Lelong, Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dans Cn, J. Anal. Math.12 (1964), 365-407. Zbl0126.29602MR166391
- [12] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure and Appl. Math14 (1961), 577-591. Zbl0111.09302MR159138
- [13] Y.T. Siu and S.-T. Yau, Complete Kähler manifolds with non-positive curvature of faster than quadratic decay, Ann. Math.105 (1977), 225-264. Zbl0358.32006MR437797
- [14] H. Skoda, Valeurs au bord pour les solutions de l'operateur d'' et caracterisation des zeros des fonctions de la classe de Navanlinna, Bull. Soc. Math. France104 (1976), 225-299. Zbl0351.31007MR450620
- [15] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinués, 1966 (Séminaire de Mathématiques Supérieures 16). Zbl0151.15501MR251373
- [16] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math.28 (1975), 201-228. Zbl0291.31002MR431040
- [17] R.L. Bishop and S.I. Goldberg, On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc.16 (1965), 119-122. Zbl0125.39403MR172221
- [18] S.I. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Diff. Geom.1 (1967), 225-233. Zbl0169.53202MR227901
- [19] R. Greene and H.-H. Wu, On a new gap phenomenon in Riemannian geometry, preprint. Zbl0487.53034MR648065
Citations in EuDML Documents
top- Philippe Delanoë, Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically ,
- Ngaiming Mok, An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties
- Kenshô Takegoshi, Energy estimates and Liouville theorems for harmonic maps
- Jean-Pierre Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.