Fano bundles of rank 2 on surfaces

Michał Szurek; Jarosław A. Wisniewski

Compositio Mathematica (1990)

  • Volume: 76, Issue: 1-2, page 295-305
  • ISSN: 0010-437X

How to cite

top

Szurek, Michał, and Wisniewski, Jarosław A.. "Fano bundles of rank 2 on surfaces." Compositio Mathematica 76.1-2 (1990): 295-305. <http://eudml.org/doc/90052>.

@article{Szurek1990,
author = {Szurek, Michał, Wisniewski, Jarosław A.},
journal = {Compositio Mathematica},
keywords = {ruled Fano 3-fold; stable vector bundles; 4-folds},
language = {eng},
number = {1-2},
pages = {295-305},
publisher = {Kluwer Academic Publishers},
title = {Fano bundles of rank 2 on surfaces},
url = {http://eudml.org/doc/90052},
volume = {76},
year = {1990},
}

TY - JOUR
AU - Szurek, Michał
AU - Wisniewski, Jarosław A.
TI - Fano bundles of rank 2 on surfaces
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 76
IS - 1-2
SP - 295
EP - 305
LA - eng
KW - ruled Fano 3-fold; stable vector bundles; 4-folds
UR - http://eudml.org/doc/90052
ER -

References

top
  1. 1 Barth, W., Moduli of Vector Bundles on the Projective Plane. Inv. Math.42, (1977), 63-91. Zbl0386.14005MR460330
  2. 2 Demin, I.V., Three-dimensional Fano manifolds representable as line fiberings (Russian). Izv. Acad. Nauk SSSR, 44, no. 4 (1980). English translation in Math. USSR Izv.17. Addendum to this paper in Izv. Acad. Nauk SSSR.46, no. 3. English translation in Math. USSR Izv.20. MR587345
  3. 3 Elencwajg, F. and Forster, O., Bounding Cohomology Groups of Vector Bundles on Pn, Math. Ann.246 (1980) 251-270. Zbl0432.14011
  4. 4 Hartshorne, R., Ample Subvarieties of Algebraic Varieties. Lecture Notes156 (1970). Zbl0208.48901MR282977
  5. 5 Hartshorne, R., Stable Vector Bundles of Rank 2 on P3. Math. Ann.238 (1978) 229-280. Zbl0411.14002MR514430
  6. 6 Kawamata, Y., The cone of curves of algebraic varieties. Ann. Math.119, 603-633 (1984). Zbl0544.14009MR744865
  7. 7 Manin, Yu.I Cubic forms, Algebra, Geometry, Arithmetic. North Holland1974. Zbl0277.14014MR833513
  8. 8 Mori, Sh., Threefolds Whose Canonical Bundle is not Numerically Effective. Ann. Math.116, 133-176 (1982). Zbl0557.14021MR662120
  9. 9 Mori, Sh. and Mukai, Sh.: Classification of Fano 3-folds with B 2 ≽ 2. Manuscripta Math.36, 147-162 (1981). Zbl0478.14033
  10. 10 Okonek, Ch., Schneider, M. and Spindler, H.: Vector Bundles on Complex Projective Spaces, Birkhäuser, 1981. Zbl0438.32016MR561910
  11. 11 Schiffman, B., and Sommese, A.J., Vanishing theorems on complex manifolds. Birkhäuser1985. Zbl0578.32055MR782484
  12. 12 Szurek, M., Wiśniewski, J.A., Fano Bundles on P3 and Q3, Pacific Journ. Math.140, no. 2. (1989). 
  13. 13 Van de Ven, A., On uniform vector bundles. Math. Ann.195 (1972) 245-248. Zbl0215.43202MR291182

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.