Fano bundles of rank 2 on surfaces
Michał Szurek; Jarosław A. Wisniewski
Compositio Mathematica (1990)
- Volume: 76, Issue: 1-2, page 295-305
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSzurek, Michał, and Wisniewski, Jarosław A.. "Fano bundles of rank 2 on surfaces." Compositio Mathematica 76.1-2 (1990): 295-305. <http://eudml.org/doc/90052>.
@article{Szurek1990,
author = {Szurek, Michał, Wisniewski, Jarosław A.},
journal = {Compositio Mathematica},
keywords = {ruled Fano 3-fold; stable vector bundles; 4-folds},
language = {eng},
number = {1-2},
pages = {295-305},
publisher = {Kluwer Academic Publishers},
title = {Fano bundles of rank 2 on surfaces},
url = {http://eudml.org/doc/90052},
volume = {76},
year = {1990},
}
TY - JOUR
AU - Szurek, Michał
AU - Wisniewski, Jarosław A.
TI - Fano bundles of rank 2 on surfaces
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 76
IS - 1-2
SP - 295
EP - 305
LA - eng
KW - ruled Fano 3-fold; stable vector bundles; 4-folds
UR - http://eudml.org/doc/90052
ER -
References
top- 1 Barth, W., Moduli of Vector Bundles on the Projective Plane. Inv. Math.42, (1977), 63-91. Zbl0386.14005MR460330
- 2 Demin, I.V., Three-dimensional Fano manifolds representable as line fiberings (Russian). Izv. Acad. Nauk SSSR, 44, no. 4 (1980). English translation in Math. USSR Izv.17. Addendum to this paper in Izv. Acad. Nauk SSSR.46, no. 3. English translation in Math. USSR Izv.20. MR587345
- 3 Elencwajg, F. and Forster, O., Bounding Cohomology Groups of Vector Bundles on Pn, Math. Ann.246 (1980) 251-270. Zbl0432.14011
- 4 Hartshorne, R., Ample Subvarieties of Algebraic Varieties. Lecture Notes156 (1970). Zbl0208.48901MR282977
- 5 Hartshorne, R., Stable Vector Bundles of Rank 2 on P3. Math. Ann.238 (1978) 229-280. Zbl0411.14002MR514430
- 6 Kawamata, Y., The cone of curves of algebraic varieties. Ann. Math.119, 603-633 (1984). Zbl0544.14009MR744865
- 7 Manin, Yu.I Cubic forms, Algebra, Geometry, Arithmetic. North Holland1974. Zbl0277.14014MR833513
- 8 Mori, Sh., Threefolds Whose Canonical Bundle is not Numerically Effective. Ann. Math.116, 133-176 (1982). Zbl0557.14021MR662120
- 9 Mori, Sh. and Mukai, Sh.: Classification of Fano 3-folds with B 2 ≽ 2. Manuscripta Math.36, 147-162 (1981). Zbl0478.14033
- 10 Okonek, Ch., Schneider, M. and Spindler, H.: Vector Bundles on Complex Projective Spaces, Birkhäuser, 1981. Zbl0438.32016MR561910
- 11 Schiffman, B., and Sommese, A.J., Vanishing theorems on complex manifolds. Birkhäuser1985. Zbl0578.32055MR782484
- 12 Szurek, M., Wiśniewski, J.A., Fano Bundles on P3 and Q3, Pacific Journ. Math.140, no. 2. (1989).
- 13 Van de Ven, A., On uniform vector bundles. Math. Ann.195 (1972) 245-248. Zbl0215.43202MR291182
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.