Some results on unipotent orbital integrals

Magdy Assem

Compositio Mathematica (1991)

  • Volume: 78, Issue: 1, page 37-78
  • ISSN: 0010-437X

How to cite

top

Assem, Magdy. "Some results on unipotent orbital integrals." Compositio Mathematica 78.1 (1991): 37-78. <http://eudml.org/doc/90081>.

@article{Assem1991,
author = {Assem, Magdy},
journal = {Compositio Mathematica},
keywords = {Selberg trace formula; local field; reductive algebraic group; endoscopic group; Hecke algebras; non-archimedean fields; unipotent orbital integrals},
language = {eng},
number = {1},
pages = {37-78},
publisher = {Kluwer Academic Publishers},
title = {Some results on unipotent orbital integrals},
url = {http://eudml.org/doc/90081},
volume = {78},
year = {1991},
}

TY - JOUR
AU - Assem, Magdy
TI - Some results on unipotent orbital integrals
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 78
IS - 1
SP - 37
EP - 78
LA - eng
KW - Selberg trace formula; local field; reductive algebraic group; endoscopic group; Hecke algebras; non-archimedean fields; unipotent orbital integrals
UR - http://eudml.org/doc/90081
ER -

References

top
  1. [1] M. Assem, Marching of certain unipotent orbital integrals on P-adic orthogonal groups, Ph.D. Thesis, University of Washington (1988). 
  2. [2] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259 (1982), pp. 153-199. Zbl0489.22010MR656661
  3. [3] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley, 1985. Zbl0567.20023MR794307
  4. [4] L. Clozel and P. Delorme, Le Théorème de Paley-Wiener invariant pour les groupes die Lie reductifs (I), Inv. Math., 77 (1984), pp. 427-453. Zbl0584.22005MR759263
  5. [5] V. Ginsburg, Integrales sur le orbites nilpotentes et representations de groupes de Weyl, C. R. Acad. Sc., Paris (1983). Zbl0544.22009
  6. [6] T. Hales, Unipotent classes induced from endoscopic groups, Mathematical Sciences Research Institute (September 1987). 
  7. [7] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984. Zbl0543.58001MR754767
  8. [8] J. Igusa, Forms of Higher Degree, Tata Institute of Fundamental Research, Bombay, 1978. MR546292
  9. [9] K. Ireland and M. Rosen, A classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 58, Springer Verlag, 1982. Zbl0482.10001MR661047
  10. [10] R. Kottwitz, Tamagawa numbers, Ann. of Math., 127 (1986), pp. 629-646. Zbl0678.22012MR942522
  11. [11] R. Langlands, Les Débuts d'une Formule de Traces Stables, Publ. Math. de l'Univ. de Paris VII (13), 1983. Zbl0532.22017MR697567
  12. [12] G. Lusztig and J. Spaltenstein, Induced unipotent classes, J. London Math. Soc., 19 (1979), pp. 41-52. Zbl0407.20035MR527733
  13. [13] I. Macdonald, Some irreducible representations of Weyl groups, Bull. London Math. Soc., 4 (1972), pp. 148-150. Zbl0251.20043MR320171
  14. [14] I. Macdonald, Spherical Functions on a Group of p-adic Type, Ramanujan Institute Publications, Madras, 1971. Zbl0302.43018MR435301
  15. [15] I. Macdonald, The Poincaré series of a Coxeter group, Math. Ann., 199 (1972), pp. 161-174. Zbl0286.20062MR322069
  16. [16] R. Rao, Orbital integrals in reductive groups, Ann. of Math., 96:3 (1972), pp. 503-510. Zbl0302.43002MR320232
  17. [17] D. Shelstad, L -indistinguishability for real groups, Math. Ann., 259 (1982), pp. 385-430. Zbl0506.22014MR661206
  18. [18] J. Spaltenstein, Classes Unipotents et Sous-Groupes de Borel, Springer Lecture Notes in Math., 1982. Zbl0486.20025MR672610
  19. [19] T. Springer, A construction of representations of Weyl groups, Inv. Math., 44 (1978), pp. 279-293. Zbl0376.17002MR491988
  20. [20] T. Springer and R. Steinberg, Conjugacy classes, seminar on algebraic groups and related finite groups, Lecture Notes in Math, 131. Zbl0249.20024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.