Some results on unipotent orbital integrals
Compositio Mathematica (1991)
- Volume: 78, Issue: 1, page 37-78
- ISSN: 0010-437X
Access Full Article
topHow to cite
topAssem, Magdy. "Some results on unipotent orbital integrals." Compositio Mathematica 78.1 (1991): 37-78. <http://eudml.org/doc/90081>.
@article{Assem1991,
author = {Assem, Magdy},
journal = {Compositio Mathematica},
keywords = {Selberg trace formula; local field; reductive algebraic group; endoscopic group; Hecke algebras; non-archimedean fields; unipotent orbital integrals},
language = {eng},
number = {1},
pages = {37-78},
publisher = {Kluwer Academic Publishers},
title = {Some results on unipotent orbital integrals},
url = {http://eudml.org/doc/90081},
volume = {78},
year = {1991},
}
TY - JOUR
AU - Assem, Magdy
TI - Some results on unipotent orbital integrals
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 78
IS - 1
SP - 37
EP - 78
LA - eng
KW - Selberg trace formula; local field; reductive algebraic group; endoscopic group; Hecke algebras; non-archimedean fields; unipotent orbital integrals
UR - http://eudml.org/doc/90081
ER -
References
top- [1] M. Assem, Marching of certain unipotent orbital integrals on P-adic orthogonal groups, Ph.D. Thesis, University of Washington (1988).
- [2] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259 (1982), pp. 153-199. Zbl0489.22010MR656661
- [3] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley, 1985. Zbl0567.20023MR794307
- [4] L. Clozel and P. Delorme, Le Théorème de Paley-Wiener invariant pour les groupes die Lie reductifs (I), Inv. Math., 77 (1984), pp. 427-453. Zbl0584.22005MR759263
- [5] V. Ginsburg, Integrales sur le orbites nilpotentes et representations de groupes de Weyl, C. R. Acad. Sc., Paris (1983). Zbl0544.22009
- [6] T. Hales, Unipotent classes induced from endoscopic groups, Mathematical Sciences Research Institute (September 1987).
- [7] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984. Zbl0543.58001MR754767
- [8] J. Igusa, Forms of Higher Degree, Tata Institute of Fundamental Research, Bombay, 1978. MR546292
- [9] K. Ireland and M. Rosen, A classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 58, Springer Verlag, 1982. Zbl0482.10001MR661047
- [10] R. Kottwitz, Tamagawa numbers, Ann. of Math., 127 (1986), pp. 629-646. Zbl0678.22012MR942522
- [11] R. Langlands, Les Débuts d'une Formule de Traces Stables, Publ. Math. de l'Univ. de Paris VII (13), 1983. Zbl0532.22017MR697567
- [12] G. Lusztig and J. Spaltenstein, Induced unipotent classes, J. London Math. Soc., 19 (1979), pp. 41-52. Zbl0407.20035MR527733
- [13] I. Macdonald, Some irreducible representations of Weyl groups, Bull. London Math. Soc., 4 (1972), pp. 148-150. Zbl0251.20043MR320171
- [14] I. Macdonald, Spherical Functions on a Group of p-adic Type, Ramanujan Institute Publications, Madras, 1971. Zbl0302.43018MR435301
- [15] I. Macdonald, The Poincaré series of a Coxeter group, Math. Ann., 199 (1972), pp. 161-174. Zbl0286.20062MR322069
- [16] R. Rao, Orbital integrals in reductive groups, Ann. of Math., 96:3 (1972), pp. 503-510. Zbl0302.43002MR320232
- [17] D. Shelstad, L -indistinguishability for real groups, Math. Ann., 259 (1982), pp. 385-430. Zbl0506.22014MR661206
- [18] J. Spaltenstein, Classes Unipotents et Sous-Groupes de Borel, Springer Lecture Notes in Math., 1982. Zbl0486.20025MR672610
- [19] T. Springer, A construction of representations of Weyl groups, Inv. Math., 44 (1978), pp. 279-293. Zbl0376.17002MR491988
- [20] T. Springer and R. Steinberg, Conjugacy classes, seminar on algebraic groups and related finite groups, Lecture Notes in Math, 131. Zbl0249.20024
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.