On the Gauss maps of space curves in characteristic p, II
Compositio Mathematica (1991)
- Volume: 78, Issue: 3, page 261-269
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKaji, Hajime. "On the Gauss maps of space curves in characteristic p, II." Compositio Mathematica 78.3 (1991): 261-269. <http://eudml.org/doc/90091>.
@article{Kaji1991,
author = {Kaji, Hajime},
journal = {Compositio Mathematica},
keywords = {elliptic curve; Gauss map; sheaf of relative differentials; characteristic },
language = {eng},
number = {3},
pages = {261-269},
publisher = {Kluwer Academic Publishers},
title = {On the Gauss maps of space curves in characteristic p, II},
url = {http://eudml.org/doc/90091},
volume = {78},
year = {1991},
}
TY - JOUR
AU - Kaji, Hajime
TI - On the Gauss maps of space curves in characteristic p, II
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 78
IS - 3
SP - 261
EP - 269
LA - eng
KW - elliptic curve; Gauss map; sheaf of relative differentials; characteristic
UR - http://eudml.org/doc/90091
ER -
References
top- [1] M.F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3)7 (1957), 414-452. Zbl0084.17305MR131423
- [2] P. Deligne, N. Katz, Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math. 340, New York/Berlin: Springer1973. Zbl0258.00005MR354657
- [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, New York/Berlin, Springer1977. Zbl0367.14001MR463157
- [4] H. Kaji, On the tangentially degenerate curves, J. London Math. Soc. (2)33 (1986), 430-440. Zbl0565.14017MR850959
- [5] H. Kaji, On the Gauss maps of space curves in characteristic p, Compositio Math.70 (1989), 177-197. Zbl0692.14015MR996326
- [6] N. Katz, B. Mazur, Arithmetic Moduli of Elliptic Curves, Ann. of Math. Stud.108, Princeton, Princeton Univ. Press1985. Zbl0576.14026MR772569
- [7] S.L. Kleiman, The enumerative theory of singularities, in Real and Complex Singularities, Oslo: Sijthoff & Noordhoff1976. Zbl0385.14018MR568897
- [8] S.L. Kleiman, Multiple tangents of smooth plane curves (after Kaji), preprint. Zbl0764.14020MR1108633
- [9] D. Laksov, Wronskians and Plücker formulas for linear systems on curves, Ann. Sci. Ecole Norm. Sup. (4) 17 (1984), 45-66. Zbl0555.14008MR744067
- [10] J.S. Milne, Étale Cohomology, Princeton Math. Ser.33, Princeton, Princeton Univ. Press1980. Zbl0433.14012
- [11] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, in Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math.10, Tokyo, Kinokuniya Company Ltd. 1987. Zbl0648.14006MR946247
- [12] D. Mumford, Abelian Varieties, Tata Inst. Fund. Res. Studies in Math.5, Bombay, Tata Inst. Fund. Res.1970. Zbl0223.14022MR282985
- [13] T. Oda, Vector bundles on an elliptic curve, Nagoya Math. J.43 (1971), 41-72. Zbl0201.53603MR318151
- [14] R. Piene, Numerical characters of a curve in projective n-space, in Real and Complex Singularities, Oslo, Sijthoff & Noordhoff1976. Zbl0375.14017MR506323
- [15] M. Raynaud, Contre-exemple au "vanishing theorem" en caractéristique p > 0, in C. P. Ramanujam-A Tribute, Tata Inst. Fund. Res. Studies in Math.8, Bombay, Tata Inst. Fund. Res.1978. Zbl0441.14006MR541027
- [16] H. Tango, On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J.48 (1972), 73-89. Zbl0239.14007MR314851
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.