On the Gauss maps of space curves in characteristic p, II

Hajime Kaji

Compositio Mathematica (1991)

  • Volume: 78, Issue: 3, page 261-269
  • ISSN: 0010-437X

How to cite

top

Kaji, Hajime. "On the Gauss maps of space curves in characteristic p, II." Compositio Mathematica 78.3 (1991): 261-269. <http://eudml.org/doc/90091>.

@article{Kaji1991,
author = {Kaji, Hajime},
journal = {Compositio Mathematica},
keywords = {elliptic curve; Gauss map; sheaf of relative differentials; characteristic },
language = {eng},
number = {3},
pages = {261-269},
publisher = {Kluwer Academic Publishers},
title = {On the Gauss maps of space curves in characteristic p, II},
url = {http://eudml.org/doc/90091},
volume = {78},
year = {1991},
}

TY - JOUR
AU - Kaji, Hajime
TI - On the Gauss maps of space curves in characteristic p, II
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 78
IS - 3
SP - 261
EP - 269
LA - eng
KW - elliptic curve; Gauss map; sheaf of relative differentials; characteristic
UR - http://eudml.org/doc/90091
ER -

References

top
  1. [1] M.F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3)7 (1957), 414-452. Zbl0084.17305MR131423
  2. [2] P. Deligne, N. Katz, Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math. 340, New York/Berlin: Springer1973. Zbl0258.00005MR354657
  3. [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, New York/Berlin, Springer1977. Zbl0367.14001MR463157
  4. [4] H. Kaji, On the tangentially degenerate curves, J. London Math. Soc. (2)33 (1986), 430-440. Zbl0565.14017MR850959
  5. [5] H. Kaji, On the Gauss maps of space curves in characteristic p, Compositio Math.70 (1989), 177-197. Zbl0692.14015MR996326
  6. [6] N. Katz, B. Mazur, Arithmetic Moduli of Elliptic Curves, Ann. of Math. Stud.108, Princeton, Princeton Univ. Press1985. Zbl0576.14026MR772569
  7. [7] S.L. Kleiman, The enumerative theory of singularities, in Real and Complex Singularities, Oslo: Sijthoff & Noordhoff1976. Zbl0385.14018MR568897
  8. [8] S.L. Kleiman, Multiple tangents of smooth plane curves (after Kaji), preprint. Zbl0764.14020MR1108633
  9. [9] D. Laksov, Wronskians and Plücker formulas for linear systems on curves, Ann. Sci. Ecole Norm. Sup. (4) 17 (1984), 45-66. Zbl0555.14008MR744067
  10. [10] J.S. Milne, Étale Cohomology, Princeton Math. Ser.33, Princeton, Princeton Univ. Press1980. Zbl0433.14012
  11. [11] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, in Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math.10, Tokyo, Kinokuniya Company Ltd. 1987. Zbl0648.14006MR946247
  12. [12] D. Mumford, Abelian Varieties, Tata Inst. Fund. Res. Studies in Math.5, Bombay, Tata Inst. Fund. Res.1970. Zbl0223.14022MR282985
  13. [13] T. Oda, Vector bundles on an elliptic curve, Nagoya Math. J.43 (1971), 41-72. Zbl0201.53603MR318151
  14. [14] R. Piene, Numerical characters of a curve in projective n-space, in Real and Complex Singularities, Oslo, Sijthoff & Noordhoff1976. Zbl0375.14017MR506323
  15. [15] M. Raynaud, Contre-exemple au "vanishing theorem" en caractéristique p &gt; 0, in C. P. Ramanujam-A Tribute, Tata Inst. Fund. Res. Studies in Math.8, Bombay, Tata Inst. Fund. Res.1978. Zbl0441.14006MR541027
  16. [16] H. Tango, On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J.48 (1972), 73-89. Zbl0239.14007MR314851

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.