The cohomological dimension of the quotient field of the two dimensional complete local domain

Takako Kuzumaki

Compositio Mathematica (1991)

  • Volume: 79, Issue: 2, page 157-167
  • ISSN: 0010-437X

How to cite

top

Kuzumaki, Takako. "The cohomological dimension of the quotient field of the two dimensional complete local domain." Compositio Mathematica 79.2 (1991): 157-167. <http://eudml.org/doc/90102>.

@article{Kuzumaki1991,
author = {Kuzumaki, Takako},
journal = {Compositio Mathematica},
keywords = {complete Noetherian local domain; cohomological dimension; absolute differential module},
language = {eng},
number = {2},
pages = {157-167},
publisher = {Kluwer Academic Publishers},
title = {The cohomological dimension of the quotient field of the two dimensional complete local domain},
url = {http://eudml.org/doc/90102},
volume = {79},
year = {1991},
}

TY - JOUR
AU - Kuzumaki, Takako
TI - The cohomological dimension of the quotient field of the two dimensional complete local domain
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 2
SP - 157
EP - 167
LA - eng
KW - complete Noetherian local domain; cohomological dimension; absolute differential module
UR - http://eudml.org/doc/90102
ER -

References

top
  1. [1] Abhyankar, S.; Resolution of singularities for arithmetical surfaces. In Arithmetical Algebraic Geometry, New York: Harper and Row, (1963), 111-152. Zbl0147.20503MR200272
  2. [2] Artin, M.; Dimension cohomologique: Premiers résultats, in SGA 4, Tome 3, Lecture Notes in Mathematics305, (1973), 43-63. Zbl0269.14007
  3. [3] Bloch, S. and Kato, K.; p-adic étale coholology. Publ. Math. I.H.E.S.63 (1986) 107-152. Zbl0613.14017MR849653
  4. [4] Gabber, O.; A lecture at I.H.E.S. on March in 1981. 
  5. [5] Hironaka, H.; Desingularization of excellent surface. Lecture at Advanced Seminar in Algebraic Geometry, Bowdoin College, Summer 1967, notes by Bruce Bennett. 
  6. [6] Kato, K.; A generalization of local class field theory by using K-groups, I. J. fac. Sci. Univ. Tokyo Sec. IA26 (1979) 303-376: II Ibid27 (1980) 602-683: III ibid29 (1982) 31-34. Zbl0428.12013MR550688
  7. [7] Kato, K.; Galois cohomology of complete discrete valuation fields. Lecture Notes in Mathematics967 (1982) 215-238. Zbl0506.12022MR689394
  8. [8] Kato, K. and Kuzumaki, T.; The dimension of fields and algebraic K-theory. Journal of Number Theory Vol. 24 No. 2 (1986) 229-244. Zbl0608.12029MR863657
  9. [9] Matumura, H.; Commutative Algebra. W. A. Benjamin Co., New York2nd ed. (1980). MR575344
  10. [10] Merkuriev, A.S. and Suslin, A.A.; K-cohomology of Severi-Brauer variety and norm residue homomorphism. Math. USSA-Izv.21 (1984) 307-340. Zbl0525.18008
  11. [11] Milnor, J.; Introduction to algebraic K-theory. Ann. Math. Stud.72 (1971). Zbl0237.18005MR349811
  12. [12] Saito, S.; Arithmetic on two dimensional local rings. Invent. Math.85 (1986) 379-414. Zbl0609.13003MR846934
  13. [13] Satz, S.S.; Profinite groups, arithmetic and geometry. Ann. Math. Stud.67 (1972). Zbl0236.12002
  14. [14] Serre, J.-P.; Cohomologie Galoisienne. Lecture Notes in Mathematics5 (1965). Zbl0136.02801MR1324577
  15. [15] Serre, J.-P.; Sur la dimension cohomologique des groupes profinis. Topology3 (1965) 413-420. Zbl0136.27402MR180619

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.