The cohomological dimension of the quotient field of the two dimensional complete local domain

Takako Kuzumaki

Compositio Mathematica (1991)

  • Volume: 79, Issue: 2, page 157-167
  • ISSN: 0010-437X

How to cite

top

Kuzumaki, Takako. "The cohomological dimension of the quotient field of the two dimensional complete local domain." Compositio Mathematica 79.2 (1991): 157-167. <http://eudml.org/doc/90102>.

@article{Kuzumaki1991,
author = {Kuzumaki, Takako},
journal = {Compositio Mathematica},
keywords = {complete Noetherian local domain; cohomological dimension; absolute differential module},
language = {eng},
number = {2},
pages = {157-167},
publisher = {Kluwer Academic Publishers},
title = {The cohomological dimension of the quotient field of the two dimensional complete local domain},
url = {http://eudml.org/doc/90102},
volume = {79},
year = {1991},
}

TY - JOUR
AU - Kuzumaki, Takako
TI - The cohomological dimension of the quotient field of the two dimensional complete local domain
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 2
SP - 157
EP - 167
LA - eng
KW - complete Noetherian local domain; cohomological dimension; absolute differential module
UR - http://eudml.org/doc/90102
ER -

References

top
  1. [1] Abhyankar, S.; Resolution of singularities for arithmetical surfaces. In Arithmetical Algebraic Geometry, New York: Harper and Row, (1963), 111-152. Zbl0147.20503MR200272
  2. [2] Artin, M.; Dimension cohomologique: Premiers résultats, in SGA 4, Tome 3, Lecture Notes in Mathematics305, (1973), 43-63. Zbl0269.14007
  3. [3] Bloch, S. and Kato, K.; p-adic étale coholology. Publ. Math. I.H.E.S.63 (1986) 107-152. Zbl0613.14017MR849653
  4. [4] Gabber, O.; A lecture at I.H.E.S. on March in 1981. 
  5. [5] Hironaka, H.; Desingularization of excellent surface. Lecture at Advanced Seminar in Algebraic Geometry, Bowdoin College, Summer 1967, notes by Bruce Bennett. 
  6. [6] Kato, K.; A generalization of local class field theory by using K-groups, I. J. fac. Sci. Univ. Tokyo Sec. IA26 (1979) 303-376: II Ibid27 (1980) 602-683: III ibid29 (1982) 31-34. Zbl0428.12013MR550688
  7. [7] Kato, K.; Galois cohomology of complete discrete valuation fields. Lecture Notes in Mathematics967 (1982) 215-238. Zbl0506.12022MR689394
  8. [8] Kato, K. and Kuzumaki, T.; The dimension of fields and algebraic K-theory. Journal of Number Theory Vol. 24 No. 2 (1986) 229-244. Zbl0608.12029MR863657
  9. [9] Matumura, H.; Commutative Algebra. W. A. Benjamin Co., New York2nd ed. (1980). MR575344
  10. [10] Merkuriev, A.S. and Suslin, A.A.; K-cohomology of Severi-Brauer variety and norm residue homomorphism. Math. USSA-Izv.21 (1984) 307-340. Zbl0525.18008
  11. [11] Milnor, J.; Introduction to algebraic K-theory. Ann. Math. Stud.72 (1971). Zbl0237.18005MR349811
  12. [12] Saito, S.; Arithmetic on two dimensional local rings. Invent. Math.85 (1986) 379-414. Zbl0609.13003MR846934
  13. [13] Satz, S.S.; Profinite groups, arithmetic and geometry. Ann. Math. Stud.67 (1972). Zbl0236.12002
  14. [14] Serre, J.-P.; Cohomologie Galoisienne. Lecture Notes in Mathematics5 (1965). Zbl0136.02801MR1324577
  15. [15] Serre, J.-P.; Sur la dimension cohomologique des groupes profinis. Topology3 (1965) 413-420. Zbl0136.27402MR180619

NotesEmbed ?

top

You must be logged in to post comments.