Topological equisingularity for isolated complete intersection singularities

A. J. Parameswaran

Compositio Mathematica (1991)

  • Volume: 80, Issue: 3, page 323-336
  • ISSN: 0010-437X

How to cite

top

Parameswaran, A. J.. "Topological equisingularity for isolated complete intersection singularities." Compositio Mathematica 80.3 (1991): 323-336. <http://eudml.org/doc/90127>.

@article{Parameswaran1991,
author = {Parameswaran, A. J.},
journal = {Compositio Mathematica},
keywords = {equisingularity; topological type of singularity; complete intersection isolated singularity; Milnor numbers; isomorphic monodromy fibrations},
language = {eng},
number = {3},
pages = {323-336},
publisher = {Kluwer Academic Publishers},
title = {Topological equisingularity for isolated complete intersection singularities},
url = {http://eudml.org/doc/90127},
volume = {80},
year = {1991},
}

TY - JOUR
AU - Parameswaran, A. J.
TI - Topological equisingularity for isolated complete intersection singularities
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 3
SP - 323
EP - 336
LA - eng
KW - equisingularity; topological type of singularity; complete intersection isolated singularity; Milnor numbers; isomorphic monodromy fibrations
UR - http://eudml.org/doc/90127
ER -

References

top
  1. [B-G] Buchweitz, R.-O and Greuel, G.-M.: The Milnor number and deformations of complex curve singularities, Invent. Math.58 (1980). Zbl0458.32014MR571575
  2. [F] Fulton, W.: Intersection theory, Erg. Math.3 Folge, Band 2, Springer-Verlag, 1984. Zbl0541.14005
  3. [G] Greuel, G. -M.: Constant Milnor number implies constant multiplicity for quasi-homogeneous singularities, Manusc. Math.56 (1986), 159-166. Zbl0594.32021MR850367
  4. [H] Hamm, H.: Lokale topologische Eigenschaften komplexer Raume, Math. Ann.191 (1971), 235-252. Zbl0214.22801MR286143
  5. [Lê1] Lê Dung Tráng: Travaux en cours36, 1988. 
  6. [Lê2] Lê Dung Tráng: Calculation of Milnor number of isolated singularity of complete intersection, Funct. Anal. Appl.8 (1974), 127-131. Zbl0351.32007MR350064
  7. [L-R] Lê Dung Tráng and Ramanujam, C.P.: The invariance of Milnor number implies the invariance of topological type, Amer. J. Math.98(1) (1976), 67-78. Zbl0351.32009MR399088
  8. [Lo] Looijenga, E.J.N.: Isolated singular points on complete intersections, London Math. Soc. Lect. Notes77, Cambridge University Press, 1984. Zbl0552.14002MR747303
  9. [M1] Massey, D.B.: The Le-Ramanujam problem for hypersurfaces with one dimensional singular sets, Math. Ann.288 (1988) 33-49. Zbl0657.32005MR960832
  10. [M2] Massey, D.B.: The Lê varieties, 1Invent. Math.99 (1990), 357-376. Zbl0712.32020MR1031905
  11. [P] Parameswaran, A.J.: Monodromy fibration of an isolated complete intersection singularity, to appear in Proc. Indo-French conference on "Geometry", Tata Institute, Bombay, 1989. Zbl0842.32025MR1274498
  12. [Sm] Smale, S.: Structure of manifolds, Amer. J. Math.84 (1962). Zbl0109.41103MR153022
  13. [Sz] Szczepanski, S.: Criteria for topological equivalence and a Lê-Ramanujam theorem for three complex variables, Duke Math. J.58(2) (1989). Zbl0676.58012MR1016432
  14. [T] Tessier, B.: Cycles evanescents, sections planes et conditions de Whitney, Asterisque7 and 8 (1973). Zbl0295.14003
  15. [Van] Vannier, J.P.: Families a un parametre de fonctions analytiques a Lieu singulier de dimension un, C.R. Acad. Sci. Paris, Ser. 1, Vol. 303 (1986), 367-370. Zbl0596.32014MR860841
  16. [Var] Varchenko, A.N.: A lower bound for the codimension of the stratum μ-constant in terms of the mixed Hodge structure, Vest. Univ. Math.37 (1982), 29-31. Zbl0511.32004
  17. [Z] Zariski, O.: Open questions in the theory of singularities, Bull. A.M.S.77 (1971), 481-491. Zbl0236.14002MR277533

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.