Topological equisingularity for isolated complete intersection singularities

A. J. Parameswaran

Compositio Mathematica (1991)

  • Volume: 80, Issue: 3, page 323-336
  • ISSN: 0010-437X

How to cite

top

Parameswaran, A. J.. "Topological equisingularity for isolated complete intersection singularities." Compositio Mathematica 80.3 (1991): 323-336. <http://eudml.org/doc/90127>.

@article{Parameswaran1991,
author = {Parameswaran, A. J.},
journal = {Compositio Mathematica},
keywords = {equisingularity; topological type of singularity; complete intersection isolated singularity; Milnor numbers; isomorphic monodromy fibrations},
language = {eng},
number = {3},
pages = {323-336},
publisher = {Kluwer Academic Publishers},
title = {Topological equisingularity for isolated complete intersection singularities},
url = {http://eudml.org/doc/90127},
volume = {80},
year = {1991},
}

TY - JOUR
AU - Parameswaran, A. J.
TI - Topological equisingularity for isolated complete intersection singularities
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 3
SP - 323
EP - 336
LA - eng
KW - equisingularity; topological type of singularity; complete intersection isolated singularity; Milnor numbers; isomorphic monodromy fibrations
UR - http://eudml.org/doc/90127
ER -

References

top
  1. [B-G] Buchweitz, R.-O and Greuel, G.-M.: The Milnor number and deformations of complex curve singularities, Invent. Math.58 (1980). Zbl0458.32014MR571575
  2. [F] Fulton, W.: Intersection theory, Erg. Math.3 Folge, Band 2, Springer-Verlag, 1984. Zbl0541.14005
  3. [G] Greuel, G. -M.: Constant Milnor number implies constant multiplicity for quasi-homogeneous singularities, Manusc. Math.56 (1986), 159-166. Zbl0594.32021MR850367
  4. [H] Hamm, H.: Lokale topologische Eigenschaften komplexer Raume, Math. Ann.191 (1971), 235-252. Zbl0214.22801MR286143
  5. [Lê1] Lê Dung Tráng: Travaux en cours36, 1988. 
  6. [Lê2] Lê Dung Tráng: Calculation of Milnor number of isolated singularity of complete intersection, Funct. Anal. Appl.8 (1974), 127-131. Zbl0351.32007MR350064
  7. [L-R] Lê Dung Tráng and Ramanujam, C.P.: The invariance of Milnor number implies the invariance of topological type, Amer. J. Math.98(1) (1976), 67-78. Zbl0351.32009MR399088
  8. [Lo] Looijenga, E.J.N.: Isolated singular points on complete intersections, London Math. Soc. Lect. Notes77, Cambridge University Press, 1984. Zbl0552.14002MR747303
  9. [M1] Massey, D.B.: The Le-Ramanujam problem for hypersurfaces with one dimensional singular sets, Math. Ann.288 (1988) 33-49. Zbl0657.32005MR960832
  10. [M2] Massey, D.B.: The Lê varieties, 1Invent. Math.99 (1990), 357-376. Zbl0712.32020MR1031905
  11. [P] Parameswaran, A.J.: Monodromy fibration of an isolated complete intersection singularity, to appear in Proc. Indo-French conference on "Geometry", Tata Institute, Bombay, 1989. Zbl0842.32025MR1274498
  12. [Sm] Smale, S.: Structure of manifolds, Amer. J. Math.84 (1962). Zbl0109.41103MR153022
  13. [Sz] Szczepanski, S.: Criteria for topological equivalence and a Lê-Ramanujam theorem for three complex variables, Duke Math. J.58(2) (1989). Zbl0676.58012MR1016432
  14. [T] Tessier, B.: Cycles evanescents, sections planes et conditions de Whitney, Asterisque7 and 8 (1973). Zbl0295.14003
  15. [Van] Vannier, J.P.: Families a un parametre de fonctions analytiques a Lieu singulier de dimension un, C.R. Acad. Sci. Paris, Ser. 1, Vol. 303 (1986), 367-370. Zbl0596.32014MR860841
  16. [Var] Varchenko, A.N.: A lower bound for the codimension of the stratum μ-constant in terms of the mixed Hodge structure, Vest. Univ. Math.37 (1982), 29-31. Zbl0511.32004
  17. [Z] Zariski, O.: Open questions in the theory of singularities, Bull. A.M.S.77 (1971), 481-491. Zbl0236.14002MR277533

NotesEmbed ?

top

You must be logged in to post comments.