The quantitative subspace theorem for number fields
Compositio Mathematica (1992)
- Volume: 82, Issue: 3, page 245-273
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSchlickewei, Hans Peter. "The quantitative subspace theorem for number fields." Compositio Mathematica 82.3 (1992): 245-273. <http://eudml.org/doc/90153>.
@article{Schlickewei1992,
author = {Schlickewei, Hans Peter},
journal = {Compositio Mathematica},
keywords = {simultaneous diophantine approximation; subspace theorem; algebraic number fields},
language = {eng},
number = {3},
pages = {245-273},
publisher = {Kluwer Academic Publishers},
title = {The quantitative subspace theorem for number fields},
url = {http://eudml.org/doc/90153},
volume = {82},
year = {1992},
}
TY - JOUR
AU - Schlickewei, Hans Peter
TI - The quantitative subspace theorem for number fields
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 3
SP - 245
EP - 273
LA - eng
KW - simultaneous diophantine approximation; subspace theorem; algebraic number fields
UR - http://eudml.org/doc/90153
ER -
References
top- [1] E. Bombieri and A.J. van der Poorten: Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. (series A), 45 (1988), 233-248. Zbl0664.10017MR951583
- [2] E. Bombieri and J. Vaaler: On Siegel's lemma, Invent. Math.73 (1983), 11-32. Zbl0533.10030MR707346
- [3] J.W.S. Cassels: An introduction to the geometry of numbers, Springer Grundlehren99 (1959). Zbl0086.26203
- [4] H. Davenport and K.F. Roth: Rational approximation to algebraic numbers, Mathematika2 (1955), 160-167. Zbl0066.29302MR77577
- [5] H. Luckhardt: Herbrand-Analysen zweier Beweise des Satzes von Roth; polynomiale Anzahlschranken, J. of Symb. Logic54 (1989), 234-263. Zbl0669.03024MR987335
- [6] K. Mahler: Zur Approximation algebraischer Zahlen I. (Über den gröBten Primteiler binärer Formen), Math. Ann. 107 (1933), 691-730. Zbl0006.10502MR1512822JFM59.0220.01
- [7] K.F. Roth: Rational approximations to algebraic numbers, Mathematika2 (1955), 1-20. Zbl0064.28501MR72182
- [8] H.P. Schlickewei: On products of special linear forms with algebraic coefficients, Acta Arith.31 (1976), 389-398. Zbl0349.10030MR429784
- [9] H.P. Schlickewei: The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math.29 (1977), 267-270. Zbl0365.10026MR491529
- [10] H.P. Schlickewei: The number of subspaces occurring in the p-adic subspace theorem in diophantine approximation, J. Reine Angew. Math.406 (1990), 44-108. Zbl0693.10027MR1048236
- [11] H.P. Schlickewei: An explicit upper bound for the number of solutions of the S-unit equation, J. Reine Angew. Math.406 (1990), 109-120. Zbl0693.10016MR1048237
- [12] H.P. Schlickewei: Linear equations in integers with bounded sum of digits, J. Number Th.35 (1990), 335-344. Zbl0711.11018MR1062338
- [13] W.M. Schmidt: Norm form equations, Annals of Math.96 (1972), 526-551. Zbl0226.10024MR314761
- [14] W.M. Schmidt: Diophantine approximation, Springer Lecture Notes in Math. 785 (1980). Zbl0421.10019MR568710
- [15] W.M. Schmidt: Simultaneous approximation to algebraic numbers by elements of a number field, Monatsh. Math.79 (1975), 55-66. Zbl0317.10042MR364112
- [16] W.M. Schmidt: The subspace theorem in diophantine approximations, Comp. Math.69 (1989), 121-173. Zbl0683.10027MR984633
- [17] W.M. Schmidt: The number of solutions of norm form equations, Trans. Amer. Math. Soc.317 (1990), 197-227. Zbl0693.10014MR961596
- [18] J.H. Silverman: Lower bounds for height functions, Duke Math. J.51 (1984), 395-403. Zbl0579.14035MR747871
Citations in EuDML Documents
top- Jan-Hendrik Evertse, An improvement of the quantitative subspace theorem
- K. Győry, On the irreducibility of neighbouring polynomials
- K. Győry, Some applications of decomposable form equations to resultant equations
- Helmut Locher, On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree
- Jan-Hendrik Evertse, An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma
- K. Győry, A. Sárközy, C. L. Stewart, On the number of prime factors of integers of the form ab + 1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.