A characterization of rational elements by Lüroth-type series expansions in the p-adic number field and in the field of Laurent series over a finite field
The Littlewood conjecture in Diophantine approximation claims thatholds for all real numbers and , where denotes the distance to the nearest integer. Its -adic analogue, formulated by de Mathan and Teulié in 2004, asserts thatholds for every real number and every prime number , where denotes the -adic absolute value normalized by . We survey the known results on these conjectures and highlight recent developments.
Let G be a commutative algebraic group defined over a number field K that is disjoint over K from and satisfies the condition of semistability. Consider a linear form l on the Lie algebra of G with algebraic coefficients and an algebraic point u in a p-adic neighbourhood of the origin with the condition that l does not vanish at u. We give a lower bound for the p-adic absolute value of l(u) which depends up to an effectively computable constant only on the height of the linear form, the height...