Regularity of the four dimensional Sklyanin algebra

S. P. Smith; J. T. Stafford

Compositio Mathematica (1992)

  • Volume: 83, Issue: 3, page 259-289
  • ISSN: 0010-437X

How to cite

top

Smith, S. P., and Stafford, J. T.. "Regularity of the four dimensional Sklyanin algebra." Compositio Mathematica 83.3 (1992): 259-289. <http://eudml.org/doc/90169>.

@article{Smith1992,
author = {Smith, S. P., Stafford, J. T.},
journal = {Compositio Mathematica},
keywords = {Sklyanin algebra; graded -algebra; generators; relations; Noetherian domain; Hilbert series; regular graded algebra; global homological dimension; Gelfand-Kirillov dimension; elliptic curves; theta functions},
language = {eng},
number = {3},
pages = {259-289},
publisher = {Kluwer Academic Publishers},
title = {Regularity of the four dimensional Sklyanin algebra},
url = {http://eudml.org/doc/90169},
volume = {83},
year = {1992},
}

TY - JOUR
AU - Smith, S. P.
AU - Stafford, J. T.
TI - Regularity of the four dimensional Sklyanin algebra
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 3
SP - 259
EP - 289
LA - eng
KW - Sklyanin algebra; graded -algebra; generators; relations; Noetherian domain; Hilbert series; regular graded algebra; global homological dimension; Gelfand-Kirillov dimension; elliptic curves; theta functions
UR - http://eudml.org/doc/90169
ER -

References

top
  1. [An] D.J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc., 296 (1986), 641-659. Zbl0598.16028MR846601
  2. [AS] M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv. Math., 66 (1987), 171-216. Zbl0633.16001MR917738
  3. [ATV1] M. Artin, J. Tate and M. van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, P. Cartier et al. Editors, Birkhauser (1990). Zbl0744.14024MR1086882
  4. [ATV2] M. Artin, J. Tate and M. van den Bergh.Modules over regular algebras of dimension 3, Invent Math. (to appear). Zbl0763.14001MR1128218
  5. [AV] M. Artin and M. van den Bergh, Twisted homogeneous coordinate rings, J. Algebra, 133 (1990), 249-271. Zbl0717.14001MR1067406
  6. [Be] G.M. Bergman, The diamond lemma for ring theory, Adv. Math., 29 (1978), 178-218. MR506890
  7. [Ch] I.V. Cherednik, On R-matrix quantization of formal loop groups (in Russian), in Group-theoretic methods in Physics. Proc. Yurmal Conference, Moscow: Nauka, 1985. Zbl0674.17002MR919789
  8. [Co] P.M. Cohn, Algebra, Vol. 2, Wiley, London, 1977. Zbl0341.00002MR530404
  9. [Ha] R. Hartshorne, Algebraic Geometry, Springer-Verlag (1977). Zbl0367.14001MR463157
  10. [Hu] D. Husemöller, Elliptic Curves, Springer-Verlag (1987). Zbl0605.14032MR868861
  11. [Ji] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), 63-69. Zbl0587.17004MR797001
  12. [KL] G. Krause and T.H. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, Pitman, London, (1985). Zbl0564.16001MR781129
  13. [Ma1] Yu. I. Manin, Some remarks on Koszul algebras and Quantum groups, Ann. Inst. Fourier, 37 (1987) 191-205. Zbl0625.58040MR927397
  14. [Ma2] Yu. I. Manin, Quantum groups and Non-commutative geometry, Les Publ. du Centre de Recherches Math., Université de Montreal, 1988. Zbl0724.17006MR1016381
  15. [MR] J C. McConnell and J.C. Robson, Non-commutative Noetherian Rings, Wiley-Interscience, Chichester, 1987. Zbl0644.16008
  16. [Mu1] D. Mumford, Abelian Varieties, Oxford Univ. Press, 1975. Zbl0326.14012MR485875
  17. [Mu2] D. Mumford, Varieties defined by quadratic relations, in Questions on Algebraic Varieties, Ed. E. Marchionne, C.I.M.E., III Ciclo, Varenna1969, Roma1970. Zbl0198.25801MR282975
  18. [OF1] A.V. Odesskii and B.L. Feigin, Sklyanin algebras associated with an elliptic curve (in Russian), Preprint (1989). MR1026987
  19. [OF2] A.V. Odesskii and B.L. Feigin, Elliptic Sklyanin algebras (in Russian), Funk. Anal. Prilozh., 23(3) (1989), 45-54. Zbl0687.17001MR1026987
  20. [Pr] S.B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc., 152 (1970), 39-60. Zbl0261.18016MR265437
  21. [Ro] J.J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979. Zbl0441.18018MR538169
  22. [Sk1] E.K. Sklyanin, Some algebraic structures connected to the Yang-Baxter equation, Func. Anal. Appl., 16 (1982), 27-34. Zbl0513.58028MR684124
  23. [Sk2] E.K. Sklyanin, Some algebraic structures connected to the Yang-Baxter equation. Representations of Quantum algebras, Func. Anal. Appl., 17 (1983), 273-284. Zbl0536.58007MR725414
  24. [We] H.M. Weber, Lehrbuch der Algebra, Vol. 3, Chelsea Publ. Co., New York (1961). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.