Some remarks on Koszul algebras and quantum groups

Yu. I. Manin

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 4, page 191-205
  • ISSN: 0373-0956

Abstract

top
The category of quadratic algebras is endowed with a tensor structure. This allows us to construct a class of Hopf algebras studied recently under the name of quantum (semi) groups.

How to cite

top

Manin, Yu. I.. "Some remarks on Koszul algebras and quantum groups." Annales de l'institut Fourier 37.4 (1987): 191-205. <http://eudml.org/doc/74774>.

@article{Manin1987,
abstract = {The category of quadratic algebras is endowed with a tensor structure. This allows us to construct a class of Hopf algebras studied recently under the name of quantum (semi) groups.},
author = {Manin, Yu. I.},
journal = {Annales de l'institut Fourier},
keywords = {category of quadratic algebras; tensor structure; Hopf algebras; quantum groups; Koszul algebras; Yang-Baxter equation},
language = {eng},
number = {4},
pages = {191-205},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some remarks on Koszul algebras and quantum groups},
url = {http://eudml.org/doc/74774},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Manin, Yu. I.
TI - Some remarks on Koszul algebras and quantum groups
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 191
EP - 205
AB - The category of quadratic algebras is endowed with a tensor structure. This allows us to construct a class of Hopf algebras studied recently under the name of quantum (semi) groups.
LA - eng
KW - category of quadratic algebras; tensor structure; Hopf algebras; quantum groups; Koszul algebras; Yang-Baxter equation
UR - http://eudml.org/doc/74774
ER -

References

top
  1. [1] V. G. DRINFELD, Quantum groups, Zap. Naučn. sem. LOMI, vol. 155 (1986), 18-49 (in russian). Zbl0617.16004MR88f:17017
  2. [2] S. B. PRIDDY, Koszul resolutions, Trans. AMS, 152-1 (1970), 39-60. Zbl0261.18016MR42 #346
  3. [3] C. LÖFWALL, On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebra, Springer Lecture Notes in Math., vol. 1183 (1986), 291-338. Zbl0595.16020MR88f:16030
  4. [4] V. V. LYUBASHENKO, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk, 41-5 (1986), 185-186 (in russian). Zbl0649.16008MR88c:58007
  5. [5] P. DELIGNE, J. MILNE, Tannakian categories, Springer lecture Notes in Math., vol. 900 (1982), 101-228. Zbl0477.14004MR84m:14046
  6. [6] A. A. BEILINSON, V. GINSBURG, Mixed categories, Ext-duality and representations, 1986, preprint. 
  7. [7] V. G. DRINFELD, On quadratic commutation relations in the quasiclassic limit, in : Mat. Fizika i Funke. Analiz, Kiev, Naukova Dumka (1986), 25-33 (in russian). Zbl0783.58025MR89c:58048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.