On the second exterior power of tangent bundles of threefolds
Frédéric Campana; Thomas Peternell
Compositio Mathematica (1992)
- Volume: 83, Issue: 3, page 329-346
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [BPV] Barth, W., Peters, C., and van de Ven, A., Compact complex surfaces. Erd. d. Math. Bd. 3, Springer1984. Zbl0718.14023MR749574
- [CP] Campana, F., and Peternell, Th., Manifolds whose tangent bundles are numerically effective. Math. Ann.289, 169-187 (1991). Zbl0729.14032MR1087244
- [Fu] Fulton, W., Intersection Theory. Erg. d. Math.2. Springer1984. Zbl0541.14005
- [Ha] Hartshorne, R., Ample vector bundles. Publ. Math. IHES29, 319-350 (1966). Zbl0173.49003MR193092
- [Is] Iskovskih, V.A., Fano 3-folds I, II. Math. USSR Isv.11, 485-527 (1977),ibid. 12, 469-506 (1978). Zbl0424.14012
- [ISh] Iskovskih, V.A. and Shokurov, V.V., Biregular theory of Fano 3-folds. Lecture Notes in Math.732, 171-182Springer1978. Zbl0417.14025MR555698
- [Ko] Kobayashi, Ochiai, T., Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ.13, 31-47 (1973). Zbl0261.32013MR316745
- [MM] Mori, S. and Mukai, S., On Fano 3-folds with b2 ≽ 2. Adv. Studies in Math.1, 101-129 (1983). Zbl0537.14026
- [Mo] Mori, S., Threefolds whose canonical bundles are not numerically effective. Ann. Math.116, 133-176 (1982). Zbl0557.14021MR662120
- [P] Peternell, Th., Calabi-Yau manifolds and a conjecture of Kobayashi. Math. Z.207, 305-318 (1991). Zbl0735.14028MR1109668
- [Sh] Shokurov, V.V., The existence of a straight line on Fano 3-folds. Math. USSR Isv.15, 173-209 (1980). Zbl0444.14027
- [D] Demazure, M., Surface de del Pezzo I-V, Lecture Notes in Math.777, 23-70. Springer1980. Zbl0444.14024
- [Y] Yau, S.T., Calabi's conjecture and some new results in algebraic geometry. Proc. Math. Acad. Sci. USA74, 1789 (1977). Zbl0355.32028MR451180