On a generalization of Tate dualities with application to Iwasawa theory

Li Guo

Compositio Mathematica (1993)

  • Volume: 85, Issue: 2, page 125-161
  • ISSN: 0010-437X

How to cite

top

Guo, Li. "On a generalization of Tate dualities with application to Iwasawa theory." Compositio Mathematica 85.2 (1993): 125-161. <http://eudml.org/doc/90195>.

@article{Guo1993,
author = {Guo, Li},
journal = {Compositio Mathematica},
keywords = {-adic Galois representations; Selmer groups; duality-pairing},
language = {eng},
number = {2},
pages = {125-161},
publisher = {Kluwer Academic Publishers},
title = {On a generalization of Tate dualities with application to Iwasawa theory},
url = {http://eudml.org/doc/90195},
volume = {85},
year = {1993},
}

TY - JOUR
AU - Guo, Li
TI - On a generalization of Tate dualities with application to Iwasawa theory
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 2
SP - 125
EP - 161
LA - eng
KW - -adic Galois representations; Selmer groups; duality-pairing
UR - http://eudml.org/doc/90195
ER -

References

top
  1. [1] S. Bloch and K. Kato: L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, vol. 1, Birkhäuser (1990), 333-400. Zbl0768.14001MR1086888
  2. [2] K.S. Brown: Cohomology of groups, Springer-Verlag (1982). Zbl0584.20036MR672956
  3. [3] J. Cassels: Arithmetic on curves of genus 1 (IV). Proof of the Hauptvermutung, J. Reine Angew. Math.211 (1962), 95-112. Zbl0106.03706MR163915
  4. [4] M. Flach: A generalization of the Cassels-Tate pairing, J. Reine Angew. Math.412 (1990), 113-127. Zbl0711.14001MR1079004
  5. [5] R. Greenberg: Iwasawa theory for p-adic representations, Adv. Stud. in Pure Math.17, Academic Press (1989), 97-137. Zbl0739.11045MR1097613
  6. [6] R. Greenberg: Iwasawa theory for motives, in L- functions and Arithmetic, Proceedings of the Durham Symposium, London Math. Soc. Lecture Notes Series, vol. 153 (1991), pp. 211-233. Zbl0727.11043MR1110394
  7. [7] L. Guo: On a generalization of Tate dualities with application to Iwasawa theory, Thesis, University of Washington, in preparation. Zbl0789.11063
  8. [8] B. Mazur: Rational points of abelian varieties with values in towers of number fields, Invent. Math.18 (1972), 183-266. Zbl0245.14015MR444670
  9. [9] W G.McCallum: On the Shafarevich-Tate group of the jacobian of a quotient of the Fermat curve, Invent. Math.93 (1988), 637-666. Zbl0661.14033MR952286
  10. [10] J.S. Milne: Arithmetic duality theorem, Academic Press (1986). Zbl0613.14019MR881804
  11. [11] K. Rubin: On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math.93 (1988), 701-713. Zbl0673.12004MR952288
  12. [12] R. Shaw: Linear algebra and group representations, Academic Press (1983). Zbl0495.15001MR701854
  13. [13] J.H. Silverman: The arithmetic of elliptic curves, Springer-Verlag (1986). Zbl0585.14026MR817210
  14. [14] J. Tate: Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math., Stockholm (1962), 234-241. Zbl0126.07002MR175892
  15. [15] E. Weiss: Cohomology of groups, Academic Press (1969). Zbl0192.34204MR263900

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.