# On a generalization of Tate dualities with application to Iwasawa theory

Compositio Mathematica (1993)

- Volume: 85, Issue: 2, page 125-161
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topGuo, Li. "On a generalization of Tate dualities with application to Iwasawa theory." Compositio Mathematica 85.2 (1993): 125-161. <http://eudml.org/doc/90195>.

@article{Guo1993,

author = {Guo, Li},

journal = {Compositio Mathematica},

keywords = {-adic Galois representations; Selmer groups; duality-pairing},

language = {eng},

number = {2},

pages = {125-161},

publisher = {Kluwer Academic Publishers},

title = {On a generalization of Tate dualities with application to Iwasawa theory},

url = {http://eudml.org/doc/90195},

volume = {85},

year = {1993},

}

TY - JOUR

AU - Guo, Li

TI - On a generalization of Tate dualities with application to Iwasawa theory

JO - Compositio Mathematica

PY - 1993

PB - Kluwer Academic Publishers

VL - 85

IS - 2

SP - 125

EP - 161

LA - eng

KW - -adic Galois representations; Selmer groups; duality-pairing

UR - http://eudml.org/doc/90195

ER -

## References

top- [1] S. Bloch and K. Kato: L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, vol. 1, Birkhäuser (1990), 333-400. Zbl0768.14001MR1086888
- [2] K.S. Brown: Cohomology of groups, Springer-Verlag (1982). Zbl0584.20036MR672956
- [3] J. Cassels: Arithmetic on curves of genus 1 (IV). Proof of the Hauptvermutung, J. Reine Angew. Math.211 (1962), 95-112. Zbl0106.03706MR163915
- [4] M. Flach: A generalization of the Cassels-Tate pairing, J. Reine Angew. Math.412 (1990), 113-127. Zbl0711.14001MR1079004
- [5] R. Greenberg: Iwasawa theory for p-adic representations, Adv. Stud. in Pure Math.17, Academic Press (1989), 97-137. Zbl0739.11045MR1097613
- [6] R. Greenberg: Iwasawa theory for motives, in L- functions and Arithmetic, Proceedings of the Durham Symposium, London Math. Soc. Lecture Notes Series, vol. 153 (1991), pp. 211-233. Zbl0727.11043MR1110394
- [7] L. Guo: On a generalization of Tate dualities with application to Iwasawa theory, Thesis, University of Washington, in preparation. Zbl0789.11063
- [8] B. Mazur: Rational points of abelian varieties with values in towers of number fields, Invent. Math.18 (1972), 183-266. Zbl0245.14015MR444670
- [9] W G.McCallum: On the Shafarevich-Tate group of the jacobian of a quotient of the Fermat curve, Invent. Math.93 (1988), 637-666. Zbl0661.14033MR952286
- [10] J.S. Milne: Arithmetic duality theorem, Academic Press (1986). Zbl0613.14019MR881804
- [11] K. Rubin: On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math.93 (1988), 701-713. Zbl0673.12004MR952288
- [12] R. Shaw: Linear algebra and group representations, Academic Press (1983). Zbl0495.15001MR701854
- [13] J.H. Silverman: The arithmetic of elliptic curves, Springer-Verlag (1986). Zbl0585.14026MR817210
- [14] J. Tate: Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math., Stockholm (1962), 234-241. Zbl0126.07002MR175892
- [15] E. Weiss: Cohomology of groups, Academic Press (1969). Zbl0192.34204MR263900

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.