Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group

E. M. Opdam

Compositio Mathematica (1993)

  • Volume: 85, Issue: 3, page 333-373
  • ISSN: 0010-437X

How to cite


Opdam, E. M.. "Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group." Compositio Mathematica 85.3 (1993): 333-373. <http://eudml.org/doc/90204>.

author = {Opdam, E. M.},
journal = {Compositio Mathematica},
keywords = {Coxeter group; Dunkl operator; Bessel equations; monodromy representation},
language = {eng},
number = {3},
pages = {333-373},
publisher = {Kluwer Academic Publishers},
title = {Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group},
url = {http://eudml.org/doc/90204},
volume = {85},
year = {1993},

AU - Opdam, E. M.
TI - Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 3
SP - 333
EP - 373
LA - eng
KW - Coxeter group; Dunkl operator; Bessel equations; monodromy representation
UR - http://eudml.org/doc/90204
ER -


  1. [1] Bott, R.: An application of the Morse theory to the topology of Lie groups. Bull Soc. Math. France84 (1958), 251-282. Zbl0073.40001MR87035
  2. [2] Bourbaki, N.: Algèbre, Chapitre 9. Hermann, Paris, 1959. Zbl0102.25503
  3. [3] Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres 4, 5 et 6. Hermann, Paris, 1968. MR240238
  4. [4] Brieskorn, E.: Die fundamentalgruppe des Raumes der regulären orbits einer komplexen spiegelungsgruppe. Inv. Math.12 (1971), 57-61. Zbl0204.56502MR293615
  5. [5] Curtis, C.W., Iwahori, N. and Kilmoyer, R.W.: Hecke algebras and the characters of parabolic type of finite groups with BN-pairs. Publ. Math. IHES40 (1971), 81-116. Zbl0254.20004MR347996
  6. [6] Deligne, P.: Equations Differentielles à Points Singulier Regulier. LNM163, Springer-Verlag (1970). Zbl0244.14004MR417174
  7. [7] Deligne, P.: Les immeubles des groupes de tresses généraliser. Inv. Math.17 (1972), 273-302. Zbl0238.20034MR422673
  8. [8] Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc.311(1) (1989). Zbl0652.33004MR951883
  9. [9] Dunkl, C.F.: Harmonic polynomials and peak sets of reflection groups. Geom. Dedicata32 (1989), 157-171. Zbl0685.33012MR1029672
  10. [10] Dunkl, C.F.: Operators Commuting with Coxeter Group Actions on Polynomials, in D. Stanton (ed.) Invariant Theory and Tableaux. Springer-Verlag (1990). Zbl0719.33008MR1035491
  11. [11] Dunkl, C.F.: Integral kernels with reflection group invariance. Canad. J. Math. (to appear). Zbl0827.33010MR1145585
  12. [12] Dunkl, C.F.: Hankel transforms associated to finite reflection groups (to appear). Zbl0789.33008MR1199124
  13. [13] Gyoja, A. and Uno, K.: On the semisimplicity of Hecke algebras. J. Math Soc. Japan41(1) (1989). Zbl0647.20038MR972165
  14. [14] Harish-Chandra: Spherical functions on a semisimple Lie group I. Amer. J. Math.80 (1958), 241-310. Zbl0093.12801MR94407
  15. [15] Harish-Chandra: Spherical functions on a semisimple Lie group II. Amer. J. Math.80 (1958), 553-613. Zbl0093.12801MR101279
  16. [16] Heckman, G.J.: Root systems and hypergeometric functions II. Compositio Math.64 (1987), 353-374. Zbl0656.17007MR918417
  17. [17] Heckman, G.J.: A remark on the Dunkl differential-difference operators. Proc. of the Bowdoin conference on harmonic analysis on reductive groups, 1989. Zbl0749.33005
  18. [18] Heckman, G.J.: An elementary approach to the hypergeometric shift operators of Opdam. Inv. Math.103 (1991), 341-350. Zbl0721.33009MR1085111
  19. [19] Heckman, G.J. and Opdam, E.M.: Root systems and hypergeometric functions I. Compositio Math.64 (1987), 329-352. Zbl0656.17006MR918416
  20. [20] Helgason, S.: Groups and Geometric Analysis. Academic Press (1984). Zbl0543.58001MR754767
  21. [21] Katz, N.M.: Nilpotent connections and the monodromy theorem; application of a result of Turrittin. Publ. Math. I.H.E.S.39 (1970), 355-432. Zbl0221.14007MR291177
  22. [22] Lek, H. v.d.: The homotopy type of complex hyperplane complements. Thesis, Univ. of Nijmegen, 1983. 
  23. [23] Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann.199 (1972), 161-174. Zbl0286.20062MR322069
  24. [24] Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. An.13 (1982) 988-1007. Zbl0498.17006MR674768
  25. [25] Matsuo, A.: Knizhnik-Zamolodchikov type equations and zonal spherical functions. Res. Inst. Math. Sci.750, Kyoto University (1991). 
  26. [26] Opdam, E.M.: Root systems and hypergeometric functions III. Compositio Math.67 (1988), 21-49. Zbl0669.33007MR949270
  27. [27] Opdam, E.M.: Root systems and hypergeometric functions IV. Compositio Math.67 (1988), 191-209. Zbl0669.33008MR951750
  28. [28] Opdam, E.M.: Some applications of hypergeometric shift operators. Inv. Math.98 (1989), 1-18. Zbl0696.33006MR1010152
  29. [29] Solomon, L.: The orders of finite Chevalley groups. J. Algebra3 (1966), 376-393. Zbl0151.02003MR199275
  30. [30] Springer, T.A.: Regular elements of finite reflection groups. Inv. Math.25 (1974), 159-198. Zbl0287.20043MR354894
  31. [31] Stanley, R.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra49 (1977), 134-148. Zbl0383.20029MR460484
  32. [32] Steinberg, R.: Lecture on Chevalley Groups. Lecture notes, Yale Univ. (1967). MR466335
  33. [33] Varadarajan, V.S.: Lie Groups, Lie Algebras and their Representations, G.T.M., Springer-Verlag (1974). Zbl0955.22500MR376938
  34. [34] Walter, W.: Gewöhnliche Differentialgleichungen. Heidelberger Taschenbücher, Springer-Verlag (1972). Zbl0247.34001MR404728
  35. [35] Yano, T. and Sekiguchi, J.: The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems I. Tokyo J. Math.2 (1979). Zbl0449.58025MR560265

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.