Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group
Compositio Mathematica (1993)
- Volume: 85, Issue: 3, page 333-373
- ISSN: 0010-437X
Access Full Article
topHow to cite
topOpdam, E. M.. "Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group." Compositio Mathematica 85.3 (1993): 333-373. <http://eudml.org/doc/90204>.
@article{Opdam1993,
author = {Opdam, E. M.},
journal = {Compositio Mathematica},
keywords = {Coxeter group; Dunkl operator; Bessel equations; monodromy representation},
language = {eng},
number = {3},
pages = {333-373},
publisher = {Kluwer Academic Publishers},
title = {Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group},
url = {http://eudml.org/doc/90204},
volume = {85},
year = {1993},
}
TY - JOUR
AU - Opdam, E. M.
TI - Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 3
SP - 333
EP - 373
LA - eng
KW - Coxeter group; Dunkl operator; Bessel equations; monodromy representation
UR - http://eudml.org/doc/90204
ER -
References
top- [1] Bott, R.: An application of the Morse theory to the topology of Lie groups. Bull Soc. Math. France84 (1958), 251-282. Zbl0073.40001MR87035
- [2] Bourbaki, N.: Algèbre, Chapitre 9. Hermann, Paris, 1959. Zbl0102.25503
- [3] Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres 4, 5 et 6. Hermann, Paris, 1968. MR240238
- [4] Brieskorn, E.: Die fundamentalgruppe des Raumes der regulären orbits einer komplexen spiegelungsgruppe. Inv. Math.12 (1971), 57-61. Zbl0204.56502MR293615
- [5] Curtis, C.W., Iwahori, N. and Kilmoyer, R.W.: Hecke algebras and the characters of parabolic type of finite groups with BN-pairs. Publ. Math. IHES40 (1971), 81-116. Zbl0254.20004MR347996
- [6] Deligne, P.: Equations Differentielles à Points Singulier Regulier. LNM163, Springer-Verlag (1970). Zbl0244.14004MR417174
- [7] Deligne, P.: Les immeubles des groupes de tresses généraliser. Inv. Math.17 (1972), 273-302. Zbl0238.20034MR422673
- [8] Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc.311(1) (1989). Zbl0652.33004MR951883
- [9] Dunkl, C.F.: Harmonic polynomials and peak sets of reflection groups. Geom. Dedicata32 (1989), 157-171. Zbl0685.33012MR1029672
- [10] Dunkl, C.F.: Operators Commuting with Coxeter Group Actions on Polynomials, in D. Stanton (ed.) Invariant Theory and Tableaux. Springer-Verlag (1990). Zbl0719.33008MR1035491
- [11] Dunkl, C.F.: Integral kernels with reflection group invariance. Canad. J. Math. (to appear). Zbl0827.33010MR1145585
- [12] Dunkl, C.F.: Hankel transforms associated to finite reflection groups (to appear). Zbl0789.33008MR1199124
- [13] Gyoja, A. and Uno, K.: On the semisimplicity of Hecke algebras. J. Math Soc. Japan41(1) (1989). Zbl0647.20038MR972165
- [14] Harish-Chandra: Spherical functions on a semisimple Lie group I. Amer. J. Math.80 (1958), 241-310. Zbl0093.12801MR94407
- [15] Harish-Chandra: Spherical functions on a semisimple Lie group II. Amer. J. Math.80 (1958), 553-613. Zbl0093.12801MR101279
- [16] Heckman, G.J.: Root systems and hypergeometric functions II. Compositio Math.64 (1987), 353-374. Zbl0656.17007MR918417
- [17] Heckman, G.J.: A remark on the Dunkl differential-difference operators. Proc. of the Bowdoin conference on harmonic analysis on reductive groups, 1989. Zbl0749.33005
- [18] Heckman, G.J.: An elementary approach to the hypergeometric shift operators of Opdam. Inv. Math.103 (1991), 341-350. Zbl0721.33009MR1085111
- [19] Heckman, G.J. and Opdam, E.M.: Root systems and hypergeometric functions I. Compositio Math.64 (1987), 329-352. Zbl0656.17006MR918416
- [20] Helgason, S.: Groups and Geometric Analysis. Academic Press (1984). Zbl0543.58001MR754767
- [21] Katz, N.M.: Nilpotent connections and the monodromy theorem; application of a result of Turrittin. Publ. Math. I.H.E.S.39 (1970), 355-432. Zbl0221.14007MR291177
- [22] Lek, H. v.d.: The homotopy type of complex hyperplane complements. Thesis, Univ. of Nijmegen, 1983.
- [23] Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann.199 (1972), 161-174. Zbl0286.20062MR322069
- [24] Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. An.13 (1982) 988-1007. Zbl0498.17006MR674768
- [25] Matsuo, A.: Knizhnik-Zamolodchikov type equations and zonal spherical functions. Res. Inst. Math. Sci.750, Kyoto University (1991).
- [26] Opdam, E.M.: Root systems and hypergeometric functions III. Compositio Math.67 (1988), 21-49. Zbl0669.33007MR949270
- [27] Opdam, E.M.: Root systems and hypergeometric functions IV. Compositio Math.67 (1988), 191-209. Zbl0669.33008MR951750
- [28] Opdam, E.M.: Some applications of hypergeometric shift operators. Inv. Math.98 (1989), 1-18. Zbl0696.33006MR1010152
- [29] Solomon, L.: The orders of finite Chevalley groups. J. Algebra3 (1966), 376-393. Zbl0151.02003MR199275
- [30] Springer, T.A.: Regular elements of finite reflection groups. Inv. Math.25 (1974), 159-198. Zbl0287.20043MR354894
- [31] Stanley, R.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra49 (1977), 134-148. Zbl0383.20029MR460484
- [32] Steinberg, R.: Lecture on Chevalley Groups. Lecture notes, Yale Univ. (1967). MR466335
- [33] Varadarajan, V.S.: Lie Groups, Lie Algebras and their Representations, G.T.M., Springer-Verlag (1974). Zbl0955.22500MR376938
- [34] Walter, W.: Gewöhnliche Differentialgleichungen. Heidelberger Taschenbücher, Springer-Verlag (1972). Zbl0247.34001MR404728
- [35] Yano, T. and Sekiguchi, J.: The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems I. Tokyo J. Math.2 (1979). Zbl0449.58025MR560265
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.