Reducibility of generalized principal series representations of U ( 2 , 2 ) via base change

David Goldberg

Compositio Mathematica (1993)

  • Volume: 86, Issue: 3, page 245-264
  • ISSN: 0010-437X

How to cite

top

Goldberg, David. "Reducibility of generalized principal series representations of $U(2, 2)$ via base change." Compositio Mathematica 86.3 (1993): 245-264. <http://eudml.org/doc/90220>.

@article{Goldberg1993,
author = {Goldberg, David},
journal = {Compositio Mathematica},
keywords = {principal series representations; reductive group; irreducible admissible representation; composition series; induced representation; intertwining integrals; orbital integrals},
language = {eng},
number = {3},
pages = {245-264},
publisher = {Kluwer Academic Publishers},
title = {Reducibility of generalized principal series representations of $U(2, 2)$ via base change},
url = {http://eudml.org/doc/90220},
volume = {86},
year = {1993},
}

TY - JOUR
AU - Goldberg, David
TI - Reducibility of generalized principal series representations of $U(2, 2)$ via base change
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 86
IS - 3
SP - 245
EP - 264
LA - eng
KW - principal series representations; reductive group; irreducible admissible representation; composition series; induced representation; intertwining integrals; orbital integrals
UR - http://eudml.org/doc/90220
ER -

References

top
  1. 1 T. Asai, On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann.226 (1977), 81-94. Zbl0326.10024MR429751
  2. 2 I.N. Bernstein and A.V. Zelevinsky, Representations of the group GL(n, F) where F is a local non-archimedean local field, Russian Math. Surveys33 (1976), 1-68. Zbl0348.43007
  3. 3 A. Borel, Automorphic L-functions, Proc. Sympos. Pure Math.33 part 2 (1979), 27-61. Zbl0412.10017MR546608
  4. 4 W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, Preprint. 
  5. 5 S.S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-Functions, Perspectives in Mathematics, vol. 6, Academic Press, San Diego, CA, 1988. Zbl0654.10028MR951897
  6. 6 Harish- Chandra, Harmonic analysis on reductive p-adic groups, Proc. Sympos. Pure Math.26 (1973), 167-192. Zbl0289.22018MR340486
  7. 7 Harish- Chandra, The Plancherelformulafor reductive p-adic groups, in Collected Papers, vol. IV, Springer-Verlag, New York, Heidelberg, Berlin, 1984, 353-367. 
  8. 8 N. Jacobson, A note on hermitian forms, Bull. Amer. Math. Soc.46 (1940), 264-268. Zbl0024.24503MR1957JFM66.0048.03
  9. 9 D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math.47 (1986), 1-36. Zbl0634.22009MR874042
  10. 10 W. Landherr, Äquivalenze Hermitscher Formen über einem beliebigen algebraischen Zahlkörper, Abh. Math. Sem. Univ. Hamburg11 (1936), 245-248. Zbl0013.38901JFM62.0170.01
  11. 11 J.D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Annals of Math. Studies, no. 123, Princeton University Press, Princeton, NJ, 1990. Zbl0724.11031MR1081540
  12. 12 F. Shahidi, On certain L-functions, Amer. J. Math.103 (1981), 297-355. Zbl0467.12013MR610479
  13. 13 F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2) 127 (1988), 547-584. Zbl0654.10029MR942520
  14. 14 F. Shahidi, A proof of Langlands conjecture for Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330. Zbl0780.22005MR1070599
  15. 15 F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J.66 (1992), 1-41. Zbl0785.22022MR1159430
  16. 16 A.J. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Mathematical Notes, no. 23, Princeton University Press, Princeton, NJ, 1979. Zbl0458.22006MR544991
  17. 17 T.A. Springer, Linear Algebraic Groups, BirkhäuserBoston, Cambridge, MA, 1981. Zbl0453.14022MR779686
  18. 18 B. Tamir, On L-functions and intertwining operators for unitary groups, Israel J. Math.73 (1991), 161-188. Zbl0760.11018MR1135210
  19. 19 J. Tate, Number theoretic background, Proc. Sympos. Pure Math. 33 part 2 (1979), 3-26. Zbl0422.12007MR546607
  20. 20 N. Winarsky, Reducibility of principal series representations of p-adic Chevalley groups, Amer. J. Math.100 (1978), 941-956. Zbl0475.43005MR517138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.