Reducibility of generalized principal series representations of via base change
Compositio Mathematica (1993)
- Volume: 86, Issue: 3, page 245-264
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGoldberg, David. "Reducibility of generalized principal series representations of $U(2, 2)$ via base change." Compositio Mathematica 86.3 (1993): 245-264. <http://eudml.org/doc/90220>.
@article{Goldberg1993,
author = {Goldberg, David},
journal = {Compositio Mathematica},
keywords = {principal series representations; reductive group; irreducible admissible representation; composition series; induced representation; intertwining integrals; orbital integrals},
language = {eng},
number = {3},
pages = {245-264},
publisher = {Kluwer Academic Publishers},
title = {Reducibility of generalized principal series representations of $U(2, 2)$ via base change},
url = {http://eudml.org/doc/90220},
volume = {86},
year = {1993},
}
TY - JOUR
AU - Goldberg, David
TI - Reducibility of generalized principal series representations of $U(2, 2)$ via base change
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 86
IS - 3
SP - 245
EP - 264
LA - eng
KW - principal series representations; reductive group; irreducible admissible representation; composition series; induced representation; intertwining integrals; orbital integrals
UR - http://eudml.org/doc/90220
ER -
References
top- 1 T. Asai, On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann.226 (1977), 81-94. Zbl0326.10024MR429751
- 2 I.N. Bernstein and A.V. Zelevinsky, Representations of the group GL(n, F) where F is a local non-archimedean local field, Russian Math. Surveys33 (1976), 1-68. Zbl0348.43007
- 3 A. Borel, Automorphic L-functions, Proc. Sympos. Pure Math.33 part 2 (1979), 27-61. Zbl0412.10017MR546608
- 4 W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, Preprint.
- 5 S.S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-Functions, Perspectives in Mathematics, vol. 6, Academic Press, San Diego, CA, 1988. Zbl0654.10028MR951897
- 6 Harish- Chandra, Harmonic analysis on reductive p-adic groups, Proc. Sympos. Pure Math.26 (1973), 167-192. Zbl0289.22018MR340486
- 7 Harish- Chandra, The Plancherelformulafor reductive p-adic groups, in Collected Papers, vol. IV, Springer-Verlag, New York, Heidelberg, Berlin, 1984, 353-367.
- 8 N. Jacobson, A note on hermitian forms, Bull. Amer. Math. Soc.46 (1940), 264-268. Zbl0024.24503MR1957JFM66.0048.03
- 9 D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math.47 (1986), 1-36. Zbl0634.22009MR874042
- 10 W. Landherr, Äquivalenze Hermitscher Formen über einem beliebigen algebraischen Zahlkörper, Abh. Math. Sem. Univ. Hamburg11 (1936), 245-248. Zbl0013.38901JFM62.0170.01
- 11 J.D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Annals of Math. Studies, no. 123, Princeton University Press, Princeton, NJ, 1990. Zbl0724.11031MR1081540
- 12 F. Shahidi, On certain L-functions, Amer. J. Math.103 (1981), 297-355. Zbl0467.12013MR610479
- 13 F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2) 127 (1988), 547-584. Zbl0654.10029MR942520
- 14 F. Shahidi, A proof of Langlands conjecture for Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330. Zbl0780.22005MR1070599
- 15 F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J.66 (1992), 1-41. Zbl0785.22022MR1159430
- 16 A.J. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Mathematical Notes, no. 23, Princeton University Press, Princeton, NJ, 1979. Zbl0458.22006MR544991
- 17 T.A. Springer, Linear Algebraic Groups, BirkhäuserBoston, Cambridge, MA, 1981. Zbl0453.14022MR779686
- 18 B. Tamir, On L-functions and intertwining operators for unitary groups, Israel J. Math.73 (1991), 161-188. Zbl0760.11018MR1135210
- 19 J. Tate, Number theoretic background, Proc. Sympos. Pure Math. 33 part 2 (1979), 3-26. Zbl0422.12007MR546607
- 20 N. Winarsky, Reducibility of principal series representations of p-adic Chevalley groups, Amer. J. Math.100 (1978), 941-956. Zbl0475.43005MR517138
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.