Subvarieties of semiabelian varieties
Compositio Mathematica (1994)
- Volume: 90, Issue: 1, page 37-52
- ISSN: 0010-437X
Access Full Article
topHow to cite
topAbramovich, Dan. "Subvarieties of semiabelian varieties." Compositio Mathematica 90.1 (1994): 37-52. <http://eudml.org/doc/90266>.
@article{Abramovich1994,
author = {Abramovich, Dan},
journal = {Compositio Mathematica},
keywords = {subvarieties of semiabelian varieties; semitorus; Mordell exceptional locus; logarithmic Kodaira dimension; Gauss map},
language = {eng},
number = {1},
pages = {37-52},
publisher = {Kluwer Academic Publishers},
title = {Subvarieties of semiabelian varieties},
url = {http://eudml.org/doc/90266},
volume = {90},
year = {1994},
}
TY - JOUR
AU - Abramovich, Dan
TI - Subvarieties of semiabelian varieties
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 1
SP - 37
EP - 52
LA - eng
KW - subvarieties of semiabelian varieties; semitorus; Mordell exceptional locus; logarithmic Kodaira dimension; Gauss map
UR - http://eudml.org/doc/90266
ER -
References
top- [1] D. Abramovich, Subvarieties of abelian varieties and of Jacobians of curves, P.H.D. Thesis, Harvard University, 1991.
- [2] D. Abramovich and J. Harris, Abelian varieties and curves in W d(C). Comp. Math.78 (1991) 227-238. Zbl0748.14010MR1104789
- [3] D. Abramovich and J.F. Voloch, Toward a proof of the Mordell-lang conjecture in characteristic p. Duke I.M.R.N., 1992. Zbl0787.14026MR1162230
- [4] F.A. Bogomolov, Points of finite order on an abelian variety. Math. of the U.S.S.R. Izvestya, vol. 17, 1 (1981) 55-72. Zbl0466.14015
- [5] O. Debarre and R. Fahlaoui, Maximal abelian varieties in Wrd(C) and a counterexample to a conjecture of Abramovich and Harris. Preprint, 1991.
- [6] G. Faltings, Diophantine approximation on abelian varieties. Annals of Math., to appear 1991. Zbl0734.14007MR1109353
- [7] G. Faltings, The general case of S. Lang's conjecture. Preprint, 1991. Zbl0823.14009
- [8] P. Griffiths and J. Harris, Algebraic geometry and local differential geometry. Ann. Scient. Éc. Norm. Sup., Ser 4, 12 (1974) 355-432. Zbl0426.14019MR559347
- [9] A. Grothendieck et al., S.G.A. III Vol. 2, Expose VIII: Groups Diagonalisables. Lecture Notes in Mathematics152.
- [10] A. Grothendieck, Fondéments de la Géométrie Algébrique, Sec. Math. Paris, 1962. Zbl0239.14002MR146040
- [11] Joe Harris, Letter to S. Lang, 1990.
- [12] Joe Harris and J. Silverman, Bi-elliptic curves and symmetric products. A.M.S. Proceedings, to appear. Zbl0727.11023
- [13] M. Hindry, Autour d'une conjecture de Serge Lang. Inven. Math.94 (1988) 575-603. Zbl0638.14026MR969244
- [14] Y. Kawamata, On Bloch's conjecture. Inv. Math.57 (1980) 97-100. Zbl0569.32012MR564186
- [15] S. Lang, Some theorems and conjectures in diophantine equations. Bul. Amer. Math. Soc.66 (1960) 240-249. Zbl0095.26301MR118698
- [16] S. Lang, Division points on curves. Annali di Mat. Pura ed Appl.LXX (1965) 229-234. Zbl0151.27401MR190146
- [17] S. Lang, Higher dimensional diophantine problems. Bull. A.M.S. 80 (1974) 779-787. Zbl0298.14014MR360464
- [18] Z.-H. Luo, Kodaira dimension of algebraic function fields. Am. J. Math. vol. 109, 4, p. 669-693. Zbl0643.14020MR900035
- [19] Z.-H. Luo,An invariant approach to the theory of logarithmic Kodaira dimension of algebraic varieties. Bull. A.M.S. (N.S.)vol. 19, 1 (1988) 319-323. Zbl0692.14024MR940496
- [20] S. Mori, Classification of higher dimensional varieties. In: Algebraic Geometry, Bowdoin1985, (ed.) S. Bloch, Procedings of Symposia in Pure Mathematics, vol. 46, part 1, p. 269-331. A.M.S., Providence R.I.1987. Zbl0656.14022MR927961
- [21] A. Neeman, Weierstrass points in characteristic p. Inv. Math.75 (1984) 359-376. Zbl0555.14009MR732551
- [22] J. Noguchi, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties. Nagoya Math. J.83 (1981) 213-233. Zbl0429.32003MR632655
- [23] T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity. Invent. Math.43 (1977) 83-89. Zbl0374.32006MR473237
- [24] Z. Ran, The structure of Gauss like maps. Comp. Math.52(2) (1984) 171-177. Zbl0547.14004MR750353
- [25] J.P. Serre, Exp. 10: Morphismes universels et variété d'Albanese; Exp. 11: Morhpisms Universels et différentielles de troisiéme espèce. Seminair C. Chevalley, 3e année: 1958/59. Zbl0123.14001
- [26] J. Silverman, Curves of low genus in the symmetric square of a curve, unpublished (included in [12]).
- [27] P. Vojta, Integral points on subvarieties of semiabelian varieties, preprint 1991. Zbl1011.11040
- [28] J.F. Voloch, On the conjectures of Mordell and Lang in positive characteristic. Inv. Math.104 (1991) 643-646. Zbl0735.14019MR1106753
- [29] K. Ueno, Classification of algebraic varieties I. Comp. Math.27 (1973) 277-342. Zbl0284.14015MR360582
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.