Subvarieties of semiabelian varieties

Dan Abramovich

Compositio Mathematica (1994)

  • Volume: 90, Issue: 1, page 37-52
  • ISSN: 0010-437X

How to cite

top

Abramovich, Dan. "Subvarieties of semiabelian varieties." Compositio Mathematica 90.1 (1994): 37-52. <http://eudml.org/doc/90266>.

@article{Abramovich1994,
author = {Abramovich, Dan},
journal = {Compositio Mathematica},
keywords = {subvarieties of semiabelian varieties; semitorus; Mordell exceptional locus; logarithmic Kodaira dimension; Gauss map},
language = {eng},
number = {1},
pages = {37-52},
publisher = {Kluwer Academic Publishers},
title = {Subvarieties of semiabelian varieties},
url = {http://eudml.org/doc/90266},
volume = {90},
year = {1994},
}

TY - JOUR
AU - Abramovich, Dan
TI - Subvarieties of semiabelian varieties
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 1
SP - 37
EP - 52
LA - eng
KW - subvarieties of semiabelian varieties; semitorus; Mordell exceptional locus; logarithmic Kodaira dimension; Gauss map
UR - http://eudml.org/doc/90266
ER -

References

top
  1. [1] D. Abramovich, Subvarieties of abelian varieties and of Jacobians of curves, P.H.D. Thesis, Harvard University, 1991. 
  2. [2] D. Abramovich and J. Harris, Abelian varieties and curves in W d(C). Comp. Math.78 (1991) 227-238. Zbl0748.14010MR1104789
  3. [3] D. Abramovich and J.F. Voloch, Toward a proof of the Mordell-lang conjecture in characteristic p. Duke I.M.R.N., 1992. Zbl0787.14026MR1162230
  4. [4] F.A. Bogomolov, Points of finite order on an abelian variety. Math. of the U.S.S.R. Izvestya, vol. 17, 1 (1981) 55-72. Zbl0466.14015
  5. [5] O. Debarre and R. Fahlaoui, Maximal abelian varieties in Wrd(C) and a counterexample to a conjecture of Abramovich and Harris. Preprint, 1991. 
  6. [6] G. Faltings, Diophantine approximation on abelian varieties. Annals of Math., to appear 1991. Zbl0734.14007MR1109353
  7. [7] G. Faltings, The general case of S. Lang's conjecture. Preprint, 1991. Zbl0823.14009
  8. [8] P. Griffiths and J. Harris, Algebraic geometry and local differential geometry. Ann. Scient. Éc. Norm. Sup., Ser 4, 12 (1974) 355-432. Zbl0426.14019MR559347
  9. [9] A. Grothendieck et al., S.G.A. III Vol. 2, Expose VIII: Groups Diagonalisables. Lecture Notes in Mathematics152. 
  10. [10] A. Grothendieck, Fondéments de la Géométrie Algébrique, Sec. Math. Paris, 1962. Zbl0239.14002MR146040
  11. [11] Joe Harris, Letter to S. Lang, 1990. 
  12. [12] Joe Harris and J. Silverman, Bi-elliptic curves and symmetric products. A.M.S. Proceedings, to appear. Zbl0727.11023
  13. [13] M. Hindry, Autour d'une conjecture de Serge Lang. Inven. Math.94 (1988) 575-603. Zbl0638.14026MR969244
  14. [14] Y. Kawamata, On Bloch's conjecture. Inv. Math.57 (1980) 97-100. Zbl0569.32012MR564186
  15. [15] S. Lang, Some theorems and conjectures in diophantine equations. Bul. Amer. Math. Soc.66 (1960) 240-249. Zbl0095.26301MR118698
  16. [16] S. Lang, Division points on curves. Annali di Mat. Pura ed Appl.LXX (1965) 229-234. Zbl0151.27401MR190146
  17. [17] S. Lang, Higher dimensional diophantine problems. Bull. A.M.S. 80 (1974) 779-787. Zbl0298.14014MR360464
  18. [18] Z.-H. Luo, Kodaira dimension of algebraic function fields. Am. J. Math. vol. 109, 4, p. 669-693. Zbl0643.14020MR900035
  19. [19] Z.-H. Luo,An invariant approach to the theory of logarithmic Kodaira dimension of algebraic varieties. Bull. A.M.S. (N.S.)vol. 19, 1 (1988) 319-323. Zbl0692.14024MR940496
  20. [20] S. Mori, Classification of higher dimensional varieties. In: Algebraic Geometry, Bowdoin1985, (ed.) S. Bloch, Procedings of Symposia in Pure Mathematics, vol. 46, part 1, p. 269-331. A.M.S., Providence R.I.1987. Zbl0656.14022MR927961
  21. [21] A. Neeman, Weierstrass points in characteristic p. Inv. Math.75 (1984) 359-376. Zbl0555.14009MR732551
  22. [22] J. Noguchi, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties. Nagoya Math. J.83 (1981) 213-233. Zbl0429.32003MR632655
  23. [23] T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity. Invent. Math.43 (1977) 83-89. Zbl0374.32006MR473237
  24. [24] Z. Ran, The structure of Gauss like maps. Comp. Math.52(2) (1984) 171-177. Zbl0547.14004MR750353
  25. [25] J.P. Serre, Exp. 10: Morphismes universels et variété d'Albanese; Exp. 11: Morhpisms Universels et différentielles de troisiéme espèce. Seminair C. Chevalley, 3e année: 1958/59. Zbl0123.14001
  26. [26] J. Silverman, Curves of low genus in the symmetric square of a curve, unpublished (included in [12]). 
  27. [27] P. Vojta, Integral points on subvarieties of semiabelian varieties, preprint 1991. Zbl1011.11040
  28. [28] J.F. Voloch, On the conjectures of Mordell and Lang in positive characteristic. Inv. Math.104 (1991) 643-646. Zbl0735.14019MR1106753
  29. [29] K. Ueno, Classification of algebraic varieties I. Comp. Math.27 (1973) 277-342. Zbl0284.14015MR360582

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.