On some tauberian theorems related to the prime number theorem

A. Hildebrand; G. Tenenbaum

Compositio Mathematica (1994)

  • Volume: 90, Issue: 3, page 315-349
  • ISSN: 0010-437X

How to cite

top

Hildebrand, A., and Tenenbaum, G.. "On some tauberian theorems related to the prime number theorem." Compositio Mathematica 90.3 (1994): 315-349. <http://eudml.org/doc/90277>.

@article{Hildebrand1994,
author = {Hildebrand, A., Tenenbaum, G.},
journal = {Compositio Mathematica},
keywords = {asymptotic behaviour of sequences; Tauberian theorems; mean value; prime number theorem},
language = {eng},
number = {3},
pages = {315-349},
publisher = {Kluwer Academic Publishers},
title = {On some tauberian theorems related to the prime number theorem},
url = {http://eudml.org/doc/90277},
volume = {90},
year = {1994},
}

TY - JOUR
AU - Hildebrand, A.
AU - Tenenbaum, G.
TI - On some tauberian theorems related to the prime number theorem
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 3
SP - 315
EP - 349
LA - eng
KW - asymptotic behaviour of sequences; Tauberian theorems; mean value; prime number theorem
UR - http://eudml.org/doc/90277
ER -

References

top
  1. [Bo1] E. Bombieri, Sull'analogo della formula di Selberg nei corpi di funzioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 35 (1963), 252-257. Zbl0121.28201MR175885
  2. [Bo2] E. Bombieri, Correction to my paper "Sull'analogo della formula di Selberg nei corpi di funzioni", ibid. (9) 1 (1990), 177-179. Zbl0714.11060MR1083245
  3. [De] H. Delange, Sur les fonctions arithmétiques multiplicatives, Ann. Scient. Ec. Norm. Sup.3° série 78 (1961), 273-304. Zbl0234.10043MR169829
  4. [Er] P. Erdös, On a Tauberian theorem connected with the new proof of the prime number theorem, J. Indian Math. Soc.13 (1949), 131-147. Zbl0034.31501MR33309
  5. [Gr] A. Granville, Solution of a problem of Bombieri, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., to appear. Zbl0805.11071MR1250496
  6. [Ha1] G. Halász, Über die Mittelwerte multiplikativer zahlentheorischer Funktionen, Acta Math. Acad. Sci. Hung.19 (1968), 365-403. Zbl0165.05804MR230694
  7. [Ha2] G. Halász, On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Scient. Math. Hungar.6 (1971), 211-233. Zbl0226.10046MR319930
  8. [HR] H. Halaberstam and H.-E. Richert, On a result of R. R. Hall, J. Number Theory (1) 11 (1979), 76-89. Zbl0395.10048MR527762
  9. [Ha] R.R. Hall, Halving an estimate obtained from Selberg's upper bound method, Acta Arith.25 (1974), 347-351. Zbl0272.10025MR340193
  10. [HT] R.R. Hall and G. Tenenbaum, Effective mean value estimates for complex multiplicative functions, Math. Proc. Camb. Phil. Soc.110 (1991), 337-351. Zbl0741.11039MR1113432
  11. [IMW] K.H. Indlekofer, E. Manstavicius, and R. Warlimont, On a certain class of infinite products with an application to arithmetical semigroups, preprint. Zbl0708.11041MR1100569
  12. [Mo] H.L. Montgomery, A note on the mean values of multiplicative functions, Inst. Mittag Leffler (1978), Report no 17. 
  13. [MPF] D.S. Mitrinović, J.E. Pečarić, and A.M. Fink, Inequalities Involving Functions, and their Integrals and Derivatives, Math. and its Appl., Vol. 53, Kluwer, Dordrecht, Boston, London1991. Zbl0744.26011MR1190927
  14. [MV] H.L. Montgomery and R.C. Vaughan, Mean values of multiplicative functions, preprint. Zbl0980.11043MR1830577
  15. [Te] G. Tenenbaum, Introduction à la Théorie Analytique et Probabiliste des Nombres, Revue de l'Institut Elie Cartan 13, Département de Mathématiques de l'Université deNancy I (1990), xiv + 499 pp. Zbl0788.11001MR1366197
  16. [Wi] E. Wirsing, Das asymptotishe Verhalten von Summen über multiplikative Funktionen II, Acta Math. Acad. Sci. Hung.18 (1967), 411-467. Zbl0165.05901MR223318
  17. [Zh1] W.-B. Zhang, The abstract prime number theorem for algebraic function fields, in: B. Berndt, H. Diamond, H. Halberstam, and A. Hildebrand (eds.), Analytic Number Theory (Urbana, 1989), Prog. Math.85, 529-558 (Birkhäuser, 1990). Zbl0723.11047MR1084200
  18. [Zh2] W.-B. Zhang, Elementary proofs of the abstract prime number theorem for algebraic function fields, Trans. Amer. Math. Soc.332 (1992), 923-937. Zbl0759.11030MR1061781

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.