Factorisation de certains morphismes birationnels

Michel Brion

Compositio Mathematica (1994)

  • Volume: 91, Issue: 1, page 57-66
  • ISSN: 0010-437X

How to cite

top

Brion, Michel. "Factorisation de certains morphismes birationnels." Compositio Mathematica 91.1 (1994): 57-66. <http://eudml.org/doc/90282>.

@article{Brion1994,
author = {Brion, Michel},
journal = {Compositio Mathematica},
keywords = {factorization of birational morphisms; singularities of invariant irreducible subvarieties; invariant subvariety; spherical variety; blow- up; exceptional divisor},
language = {fre},
number = {1},
pages = {57-66},
publisher = {Kluwer Academic Publishers},
title = {Factorisation de certains morphismes birationnels},
url = {http://eudml.org/doc/90282},
volume = {91},
year = {1994},
}

TY - JOUR
AU - Brion, Michel
TI - Factorisation de certains morphismes birationnels
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 91
IS - 1
SP - 57
EP - 66
LA - fre
KW - factorization of birational morphisms; singularities of invariant irreducible subvarieties; invariant subvariety; spherical variety; blow- up; exceptional divisor
UR - http://eudml.org/doc/90282
ER -

References

top
  1. [Bo] N. Bourbaki, Groupes et algèbres de Lie, Chap. VIII, C.C.L.S., Paris, 1975. 
  2. [BLV] M. Brion, D. Luna, and T. Vust, Espaces homogènes sphériques, Invent. Math.84 (1986) 617-632. Zbl0604.14047MR837530
  3. [BP] M. Brion and F. Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helv.62 (1987) 265-285. Zbl0627.14038MR896097
  4. [B1] M. Brion, Sur l'image de l'application moment, dans: Séminaire d'algèbre (M. P. Malliavin, ed.) 177-192, Lecture Note in Math. 1296, Springer-Verlag, 1987. Zbl0667.58012MR932055
  5. [B2] M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J.58(2) (1989) 397-424. Zbl0701.14052MR1016427
  6. [E] L. Ein, Varieties with small dual varieties I, Invent. Math.86 (1986) 63 - 74. Zbl0603.14025MR853445
  7. [Ki] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Note 31, Princeton University Press, 1984. Zbl0553.14020MR766741
  8. [Kn] F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad conference on algebraic groups (S. Ramanan, ed.), 225-249, Manoj Prakashan, 1991. Zbl0812.20023MR1131314
  9. [L] D. Luna, Slices étales, Mémoire de la S.M.F.33 (1973), 81-105. Zbl0286.14014MR342523
  10. [O] T. Oda, Convex bodies and algebraic geometry (An introduction to the theory of toric varieties), Ergebnisse der Math. 15, Springer-Verlag, 1988. Zbl0628.52002MR922894
  11. [SK] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J.65 (1977), 1-155. Zbl0321.14030MR430336
  12. [Sn] D. Snow, The nef value and defect of homogeneous line bundles, à paraître. Zbl0808.14042
  13. [St] M. Steinsieck, Transformation groups on homogeneous-rational manifolds, Math. Ann.260 (1982) 423-435. Zbl0503.32017MR670191

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.