Stable G 2 bundles and algebraically completely integrable systems

L. Katzarkov; T. Pantev

Compositio Mathematica (1994)

  • Volume: 92, Issue: 1, page 43-60
  • ISSN: 0010-437X

How to cite

top

Katzarkov, L., and Pantev, T.. "Stable $G_2$ bundles and algebraically completely integrable systems." Compositio Mathematica 92.1 (1994): 43-60. <http://eudml.org/doc/90298>.

@article{Katzarkov1994,
author = {Katzarkov, L., Pantev, T.},
journal = {Compositio Mathematica},
keywords = {exceptional Lie group; moduli space over compact Riemann surface; compactification of level set of integrable system; Prym variety; Jacobian variety; completely integrable system},
language = {eng},
number = {1},
pages = {43-60},
publisher = {Kluwer Academic Publishers},
title = {Stable $G_2$ bundles and algebraically completely integrable systems},
url = {http://eudml.org/doc/90298},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Katzarkov, L.
AU - Pantev, T.
TI - Stable $G_2$ bundles and algebraically completely integrable systems
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 1
SP - 43
EP - 60
LA - eng
KW - exceptional Lie group; moduli space over compact Riemann surface; compactification of level set of integrable system; Prym variety; Jacobian variety; completely integrable system
UR - http://eudml.org/doc/90298
ER -

References

top
  1. [B] A. Beauville: Prym varieties and the Schottky problem, Invent. Math.41 (1977) 149-196. Zbl0333.14013MR572974
  2. [BNR] A. Beauville, M.S. Narasimhan and S. Ramanan: Spectral curves and the generalized theta divisor, J. reine angew. Math.398 (1989) 169-179. Zbl0666.14015MR998478
  3. [BK] A. Beilinson and D. Kazhdan: Flat Projective Connections (1990) preprint. 
  4. [D] R. Donagi: Spectral covers, to appear in Journees de Geometrie Algebraique, Orsay. Zbl0877.14026MR1397059
  5. [H1] N. Hitchin: Stable bundles and integrable systems, Duke Math. Journ.54 (1987) 91-114. Zbl0627.14024MR885778
  6. [H2] N. Hitchin: The self-duality equations on the Riemann surface, Proc. London Math. Soc.55 (1987) 59-126. Zbl0634.53045MR887284
  7. [K1] V. Kanev: Spectral curves, simple Lie algebras and Prym-Tjurin varieties, Proc. Symp. Pure Math.49(1) (1989) 627-649. Zbl0707.14041MR1013158
  8. [K2] V. Kanev: Theta Divizors of Generalized Prym Varieties. I., Lect. Notes in Math.1124, pp. 166-215 (Springer-Verlag) 1985. Zbl0575.14037MR805335
  9. [L] S. Lang: Abelian Varieties (Springer-Verlag) 1983. Zbl0516.14031MR713430
  10. [OGV] A. Onischik, V. Gorbatsevitch, E. Vinberg: The Structure of the Lie Groups and Algebras, Encycl. of Math. Sciences41, ch. 5 (Springer-Verlag) 1992). Zbl0797.22001
  11. [Sch] G. Schwartz: Invariant theory of G2 and spin 7, Comment. Math. Helvetici63 (1988) 624-663. Zbl0664.14006
  12. [Sh] V. Shokurov: Prym varieties: theory and application, Math. USSR Izvestiya23 (1984) 83-147. Zbl0572.14025MR712095
  13. [R] A. Ramanathan: Moduli for Principal Bundles, Lect. Notes in Math.732, pp 527-533 (Springer-Verlag) 1979 Zbl0419.14005MR555715
  14. [S] C. Simpson: Moduli of Representation of the Fundamental Group of a Smooth Projective Variety (1989) preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.