Equivariant short exact sequences of vector bundles and their analytic torsion forms

Jean-Michel Bismut

Compositio Mathematica (1994)

  • Volume: 93, Issue: 3, page 291-354
  • ISSN: 0010-437X

How to cite


Bismut, Jean-Michel. "Equivariant short exact sequences of vector bundles and their analytic torsion forms." Compositio Mathematica 93.3 (1994): 291-354. <http://eudml.org/doc/90325>.

author = {Bismut, Jean-Michel},
journal = {Compositio Mathematica},
keywords = {Hermitian vector bundles; characteristic classes; superconnection},
language = {eng},
number = {3},
pages = {291-354},
publisher = {Kluwer Academic Publishers},
title = {Equivariant short exact sequences of vector bundles and their analytic torsion forms},
url = {http://eudml.org/doc/90325},
volume = {93},
year = {1994},

AU - Bismut, Jean-Michel
TI - Equivariant short exact sequences of vector bundles and their analytic torsion forms
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 93
IS - 3
SP - 291
EP - 354
LA - eng
KW - Hermitian vector bundles; characteristic classes; superconnection
UR - http://eudml.org/doc/90325
ER -


  1. [B1] Bismut, J. -M.: Koszul complexes, harmonic oscillators and the Todd class, J. Am. Math. Soc.3 (1990) 159-256. Zbl0702.58071MR1017783
  2. [B2] Bismut, J. -M.: Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions, Z. Wahrsh. Verw. Gebiete56 (1981) 469- 505. Zbl0445.60049MR621660
  3. [B3] Bismut, J. -M.: The infinitesimal Lefschetz formulas: A heat equation proof, J. Funct. Anal.62 (1985) 435-457. Zbl0572.58021MR794778
  4. [B4] Bismut, J. -M.: The index theorem for families of Dirac operators: two heat equation proofs, Invent. Math.83 (1986) 91-151. Zbl0592.58047MR813584
  5. [B5] Bismut, J.-M.: Complex equivariant intersection, excess normal bundles and Bott-Chern currents, Comm. Math. Phys.148 (1992) 1—55. Zbl0759.53040
  6. [B6] Bismut, J.-M.: On certain infinite dimensional aspects of Arakelov intersection theory, Comm. Math. Phys.148 (1992) 217-248. Zbl0763.53033MR1178144
  7. [B7] Bismut, J.-M.: Transformations différentiables du mouvement Brownien, Proc. Conf. in honor of L. Schwartz, Astérisque131 (1985) 61-87. Zbl0572.60074MR816739
  8. [B8] Bismut, J.-M.: Torsion analytique équivariante d'une suite exacte courte de fibrés holomorphes, C.R. Acad. Sci. Paris316, série I (1993) 579- 584. Zbl0784.32022MR1212208
  9. [B9] Bismut, J.-M.: Métriques de Quillen equivariantes et plongements complexes, C.R. Acad. Sci. Paris316 série I (1993) 827-832. Zbl0773.53026MR1218270
  10. [B10] Bismut, J.-M.: Equivariant immersions and Quillen metrics, Preprint Orsay93-56. To appear in J. Jiff. Geom. Zbl0826.32024MR1316553
  11. [BGS1] Bismut, J.-M., Gillet, H. and Soulé, C.: Analytic torsion and holomorphic determinant bundles.I, Comm. Math. Phys.115 (1988) 49-78. Zbl0651.32017MR929146
  12. [BGS2] Bismut, J.-M., Gillet, H. and Soulé, C.: Analytic torsion and holomorphic determinant bundles. II, Comm. Math. Phys.115 (1988) 79-126. Zbl0651.32017MR929147
  13. [BGS3] Bismut, J.-M., Gillet, H. and Soulé, C.: Analytic torsion and holomorphic determinant bundles. III, Comm. Math. Phys.115 (1988) 301-351. Zbl0651.32017MR931666
  14. [BL] Bismut, J.-M. and Lebeau, G.: Complex immersions and Quillen metrics, Publ. Math. IHES74 (1991) 1-298. Zbl0784.32010MR1188532
  15. [BoC] Bott, R. and Chern, S.S.: Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math.114 (1968) 71-112. Zbl0148.31906MR185607
  16. [D] Donaldson, S.: Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc.50 (1985) 1-26. Zbl0529.53018MR765366
  17. [F] Faltings, G.: Lectures on the Arithmetic Riemann-Roch Theorem. Princeton Univ. Press, Princeton, 1992. Zbl0744.14016MR1158661
  18. [GlJ] Glimm, J. and Jaffe, A.: Quantum Physics, Springer, Berlin, Heidelberg, New York, 1987. Zbl0461.46051MR887102
  19. [GS1] Gillet, H. and Soulé, C.: Analytic torsion and the arithmetic Todd genus, Topology31 (1991) 21-54. Zbl0787.14005MR1081932
  20. [GS2] Gillet, H. and Soulé, C.: Arithmetic intersection theory, Publ. Math. IHES72 (1990) 93-174. Zbl0741.14012MR1087394
  21. [GS3] Gillet, H. and Soulé, C.: Characteristic classes for algebraic vector bundles with Hermitian metrics. I, Ann. Math.131 (1990) 163-203; II, 131 (1990) 205-238. Zbl0715.14006MR1038362
  22. [GS4] Gillet, H. and Soulé, C.: An arithmetic Riemann-Roch theorem, Invent. Math.110 (1992), 473-543. Zbl0777.14008MR1189489
  23. [IkW] Ikeda, N. and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981. Zbl0495.60005MR637061
  24. [IMK] Itô, K. and McKean, H.: Diffusion processes and their sample paths, Grundl. Math. Wiss., bd. 125, Springer, Berlin, Heidelberg, New York, 1974. Zbl0285.60063MR345224
  25. [K] Köhler, K.: Equivariant analytic torsion on P''C, to appear. 
  26. [L] Lerch, M.: Note sur la fonction R(w, x, s) = Σ∞0e2πkix /(w+k)s, Acta Math. 11 (1887-1888) 19-24. JFM19.0438.01
  27. [Ma] Malliavin, P.: Stochastic calculus of variations and hypoelliptic operators, Proc. Conf. on Stochastic Differential Equations, Kyoto (1976); Wiley, New York (1978) pp. 195-263. Zbl0411.60060MR536013
  28. [MQ] Mathai, V. and Quillen, D.: Superconnections, Thom classes and equivariant differential forms, Topology25 (1986) 85-110. Zbl0592.55015MR836726
  29. [NO] Nikiforov, A. and Ouvarov, V.: Eléments de la théorie des fonctions spéciales, Mir, Moscow, 1976. Zbl0378.33001MR460738
  30. [Q1] Quillen, D.: Superconnections and the Chern character, Topology24 (1985) 89-95. Zbl0569.58030MR790678
  31. [Q2] Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface, Func. Anal. Appl.14 (1985) 31-34. Zbl0603.32016
  32. [RS] Ray, D.B. and Singer, I.M.: Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973) 154-177. Zbl0267.32014MR383463
  33. [Si1] Simon, B.: Functional Integration and Quantum Physics, Academic Press, New York, 1979. Zbl0434.28013MR544188
  34. [Si2] Simon, B.: Notes on infinite determinants of Hilbert space operators, Adv. in Math.24 (1977) 244-273. Zbl0353.47008MR482328
  35. [W] Weil, A.: Elliptic functions according to Eisenstein and Kronecker, Erg. Math. Grenzg. 88, Springer, Berlin, Heidelberg, New York, 1976. Zbl0318.33004MR562289

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.