A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula
Kai Köhler[1]; Damien Roessler[2]
- [1] Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne)
- [2] ETH-Zentrum, Mathematik Department, 8092 Zurich (Suisse)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 1, page 81-103
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKöhler, Kai, and Roessler, Damien. "A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula." Annales de l’institut Fourier 52.1 (2002): 81-103. <http://eudml.org/doc/115981>.
@article{Köhler2002,
abstract = {This is the second of a series of papers dealing with an analog in Arakelov geometry of
the holomorphic Lefschetz fixed point formula. We use the main result of the first paper
to prove a residue formula "à la Bott" for arithmetic characteristic classes living on
arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut-
Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.},
affiliation = {Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne); ETH-Zentrum, Mathematik Department, 8092 Zurich (Suisse)},
author = {Köhler, Kai, Roessler, Damien},
journal = {Annales de l’institut Fourier},
keywords = {Arakelov; analytic torsion; Bott; fixed point formula; height; Hermitian bundle; arithmetic Bott residue formula; arithmetic Lefschetz fixed point formula; arithmetic Riemann-Roch theorem; arithmetic Chern number; anomaly term; characteristic current; Arakelov geometry},
language = {eng},
number = {1},
pages = {81-103},
publisher = {Association des Annales de l'Institut Fourier},
title = {A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula},
url = {http://eudml.org/doc/115981},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Köhler, Kai
AU - Roessler, Damien
TI - A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 81
EP - 103
AB - This is the second of a series of papers dealing with an analog in Arakelov geometry of
the holomorphic Lefschetz fixed point formula. We use the main result of the first paper
to prove a residue formula "à la Bott" for arithmetic characteristic classes living on
arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut-
Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.
LA - eng
KW - Arakelov; analytic torsion; Bott; fixed point formula; height; Hermitian bundle; arithmetic Bott residue formula; arithmetic Lefschetz fixed point formula; arithmetic Riemann-Roch theorem; arithmetic Chern number; anomaly term; characteristic current; Arakelov geometry
UR - http://eudml.org/doc/115981
ER -
References
top- M.F. Atiyah, I.M. Singer, The index of elliptic operators I, II, III, Ann. of Math. 87 (1967), 484-604 Zbl0164.24001MR236950
- N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, (1992), Springer Zbl0744.58001MR1215720
- J.-M. Bismut, Equivariant Bott-Chern currents and the Ray-Singer analytic torsion, Math. Ann. 287 (1990), 495-507 Zbl0682.58045MR1060688
- J.-M. Bismut, Equivariant short exact sequences of vector bundles and their analytic torsion forms, Comp. Math. 93 (1994), 291-354 Zbl0817.32014MR1300765
- J.-M. Bismut, Equivariant immersions and Quillen metrics, J. Diff. Geom. 41 (1995), 53-157 Zbl0826.32024MR1316553
- J.-M. Bismut, Analytic torsion and holomorphic determinant bundles III, Comm. Math. Phys. 115 (1988), 301-351 Zbl0651.32017MR931666
- J.-M. Bismut, S. Goette, Holomorphic equivariant analytic torsions, Geom. Funct. Anal. 10 (2001), 1289-1422 Zbl0974.58033MR1810746
- J. Dieudonné, A. Grothendieck, Éléments de Géométrie Algébrique I, 166 (1971), Springer Zbl0203.23301
- H. Donnelly, Spectrum and the fixed point set of isometries I, Math. Ann. 224 (1976), 161-176 Zbl0319.53031MR420743
- H. Donnelly, V.K. Patodi, Spectrum and the fixed point sets of isometries II, Topology 16 (1977), 1-11 Zbl0341.53023MR433513
- D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), 619-636 Zbl0980.14004MR1623412
- H. Gillet, C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metrics I, II, Annals of Math. 131 (1990), 163-203 ; 205--238 Zbl0715.14006MR1038362
- H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem, Inv. Math. 110 (1992), 473-543 Zbl0777.14008MR1189489
- R. Hartshorne, Algebraic geometry, (1977), Springer Zbl0367.14001MR463157
- Ch. Kaiser, K. Köhler, A fixed point formula of Lefschetz type in Arakelov geometry III: representations of Chevalley schemes and heights of flag varieties (to appear) Zbl1023.14008
- K. Köhler, Equivariant analytic torsion on , Math. Ann. 297 (1993), 553-565 Zbl0788.58057MR1245405
- K. Köhler, Holomorphic torsion on Hermitian symmetric spaces, J. reine angew. Math. 460 (1995), 93-116 Zbl0811.53050MR1316573
- K. Köhler, Complex analytic torsion forms for torus fibrations and moduli spaces, Regulators in Analysis, Geometry and Number Theory, 167-205, Birkäuser Zbl1071.58026
- K. Köhler, A Hirzebruch proportionality principle in Arakelov geometry, (April 2001) Zbl1101.14035MR2176753
- K. Köhler, D. Roessler, A fixed point formula of Lefschetz type in Arakelov geometry I: statement and proof, Inv. Math. 145 (2001), 333-396 Zbl0999.14002MR1872550
- X. Ma, Submersions and equivariant Quillen metrics, Ann. Inst. Fourier (Grenoble) (2000), 1539-1588 Zbl0964.58025MR1800127
- V. Maillot, D. Roessler, Conjectures sur les dérivées logarithmiques des fonctions d’Artin aux entiers négatifs (to appear) Zbl1078.14519
- R.W. Thomasson, Algebraic -theory of group scheme actions, Algebraic topology and algebraic K-theory (Princeton, 1983) (1987), Princeton Univ. Press Zbl0701.19002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.