A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula

Kai Köhler[1]; Damien Roessler[2]

  • [1] Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne)
  • [2] ETH-Zentrum, Mathematik Department, 8092 Zurich (Suisse)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 1, page 81-103
  • ISSN: 0373-0956

Abstract

top
This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.

How to cite

top

Köhler, Kai, and Roessler, Damien. "A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula." Annales de l’institut Fourier 52.1 (2002): 81-103. <http://eudml.org/doc/115981>.

@article{Köhler2002,
abstract = {This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.},
affiliation = {Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne); ETH-Zentrum, Mathematik Department, 8092 Zurich (Suisse)},
author = {Köhler, Kai, Roessler, Damien},
journal = {Annales de l’institut Fourier},
keywords = {Arakelov; analytic torsion; Bott; fixed point formula; height; Hermitian bundle; arithmetic Bott residue formula; arithmetic Lefschetz fixed point formula; arithmetic Riemann-Roch theorem; arithmetic Chern number; anomaly term; characteristic current; Arakelov geometry},
language = {eng},
number = {1},
pages = {81-103},
publisher = {Association des Annales de l'Institut Fourier},
title = {A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula},
url = {http://eudml.org/doc/115981},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Köhler, Kai
AU - Roessler, Damien
TI - A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 81
EP - 103
AB - This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.
LA - eng
KW - Arakelov; analytic torsion; Bott; fixed point formula; height; Hermitian bundle; arithmetic Bott residue formula; arithmetic Lefschetz fixed point formula; arithmetic Riemann-Roch theorem; arithmetic Chern number; anomaly term; characteristic current; Arakelov geometry
UR - http://eudml.org/doc/115981
ER -

References

top
  1. M.F. Atiyah, I.M. Singer, The index of elliptic operators I, II, III, Ann. of Math. 87 (1967), 484-604 Zbl0164.24001MR236950
  2. N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, (1992), Springer Zbl0744.58001MR1215720
  3. J.-M. Bismut, Equivariant Bott-Chern currents and the Ray-Singer analytic torsion, Math. Ann. 287 (1990), 495-507 Zbl0682.58045MR1060688
  4. J.-M. Bismut, Equivariant short exact sequences of vector bundles and their analytic torsion forms, Comp. Math. 93 (1994), 291-354 Zbl0817.32014MR1300765
  5. J.-M. Bismut, Equivariant immersions and Quillen metrics, J. Diff. Geom. 41 (1995), 53-157 Zbl0826.32024MR1316553
  6. J.-M. Bismut, Analytic torsion and holomorphic determinant bundles III, Comm. Math. Phys. 115 (1988), 301-351 Zbl0651.32017MR931666
  7. J.-M. Bismut, S. Goette, Holomorphic equivariant analytic torsions, Geom. Funct. Anal. 10 (2001), 1289-1422 Zbl0974.58033MR1810746
  8. J. Dieudonné, A. Grothendieck, Éléments de Géométrie Algébrique I, 166 (1971), Springer Zbl0203.23301
  9. H. Donnelly, Spectrum and the fixed point set of isometries I, Math. Ann. 224 (1976), 161-176 Zbl0319.53031MR420743
  10. H. Donnelly, V.K. Patodi, Spectrum and the fixed point sets of isometries II, Topology 16 (1977), 1-11 Zbl0341.53023MR433513
  11. D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), 619-636 Zbl0980.14004MR1623412
  12. H. Gillet, C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metrics I, II, Annals of Math. 131 (1990), 163-203 ; 205--238 Zbl0715.14006MR1038362
  13. H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem, Inv. Math. 110 (1992), 473-543 Zbl0777.14008MR1189489
  14. R. Hartshorne, Algebraic geometry, (1977), Springer Zbl0367.14001MR463157
  15. Ch. Kaiser, K. Köhler, A fixed point formula of Lefschetz type in Arakelov geometry III: representations of Chevalley schemes and heights of flag varieties (to appear) Zbl1023.14008
  16. K. Köhler, Equivariant analytic torsion on n ( ) , Math. Ann. 297 (1993), 553-565 Zbl0788.58057MR1245405
  17. K. Köhler, Holomorphic torsion on Hermitian symmetric spaces, J. reine angew. Math. 460 (1995), 93-116 Zbl0811.53050MR1316573
  18. K. Köhler, Complex analytic torsion forms for torus fibrations and moduli spaces, Regulators in Analysis, Geometry and Number Theory, 167-205, Birkäuser Zbl1071.58026
  19. K. Köhler, A Hirzebruch proportionality principle in Arakelov geometry, (April 2001) Zbl1101.14035MR2176753
  20. K. Köhler, D. Roessler, A fixed point formula of Lefschetz type in Arakelov geometry I: statement and proof, Inv. Math. 145 (2001), 333-396 Zbl0999.14002MR1872550
  21. X. Ma, Submersions and equivariant Quillen metrics, Ann. Inst. Fourier (Grenoble) (2000), 1539-1588 Zbl0964.58025MR1800127
  22. V. Maillot, D. Roessler, Conjectures sur les dérivées logarithmiques des fonctions L d’Artin aux entiers négatifs (to appear) Zbl1078.14519
  23. R.W. Thomasson, Algebraic K -theory of group scheme actions, Algebraic topology and algebraic K-theory (Princeton, 1983) (1987), Princeton Univ. Press Zbl0701.19002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.