Duistermaat-Heckman measures in a non-compact setting
Compositio Mathematica (1994)
- Volume: 94, Issue: 2, page 113-128
- ISSN: 0010-437X
Access Full Article
topHow to cite
topPrato, Elisa, and Wu, Siye. "Duistermaat-Heckman measures in a non-compact setting." Compositio Mathematica 94.2 (1994): 113-128. <http://eudml.org/doc/90331>.
@article{Prato1994,
author = {Prato, Elisa, Wu, Siye},
journal = {Compositio Mathematica},
keywords = {Hamiltonian action; moment map; Duistermaat-Heckman formula},
language = {eng},
number = {2},
pages = {113-128},
publisher = {Kluwer Academic Publishers},
title = {Duistermaat-Heckman measures in a non-compact setting},
url = {http://eudml.org/doc/90331},
volume = {94},
year = {1994},
}
TY - JOUR
AU - Prato, Elisa
AU - Wu, Siye
TI - Duistermaat-Heckman measures in a non-compact setting
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 94
IS - 2
SP - 113
EP - 128
LA - eng
KW - Hamiltonian action; moment map; Duistermaat-Heckman formula
UR - http://eudml.org/doc/90331
ER -
References
top- [A] M.F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc.14 (1982), 1-15. Zbl0482.58013MR642416
- [BV] N. Berline, M. Vergne, Classes caractéristiques équivariantes, formule de localisation en cohomologie équivariante, Comptes Rendus Acad. Sc. Paris295 (1982), 539-541; Zéros d'un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J.50 (1983), 539-549. Zbl0515.58007MR685019
- [CDM-HNP] M. Condevaux, P. Dazord and P. Molino, Géométrie du moment, In Travaux du Séminaire Sud-Rodanien de Géométrie I, Publ. Dép. Math. Nouvelle Sér. B88-1, Univ. Claude-Bernard, Lyon (1988), pp. 131-160; MR1040871
- J. Hilgert, K.-H. Neeb and W. Plank, Symplectic convexity theorems and coadjoint orbits, preprint 1993. Zbl0819.22006MR1270171
- [DHV] M. Duflo, G. Heckman and M. Vergne, Projection d'orbites, formule de Kirillov et formule de Blattner, Mem. Soc. Math. France15 (1984), 65-128. Zbl0575.22014MR789081
- [DH] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space,Invent. Math.69 (1982), 259-268; Addendum, ibid. 72 (1983), 153-158. Zbl0503.58016MR674406
- [F-L-B] W. Fenchel, Convex cones, sets, and functions, Princeton University lecture notes (1953); Zbl0053.12203
- S.R. Lay, Convex sets and their applications, John Wiley & Sons, New York, Chichester, Brisbane, 1982, Chap. 8; Zbl0492.52001MR655598
- A. Brøndsted, An introduction to convex polytopes, Springer-Verlag, New York, Heidelberg, Berlin, 1983, §8. Zbl0509.52001MR683612
- [GLS] V. Guillemin, E. Lerman and S. Sternberg, On the Kostant multiplicity formula, J. Geom. Phys.5 (1988), 721-750. Zbl0713.58013MR1075729
- [GP] V. Guillemin and E. Prato, Heckman, Kostant, and Steinberg formulas for symplectic manifolds, Adv. Math.82 (1990), 160-179. Zbl0718.58027MR1063956
- [GS] V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, New York, Melbourne, 1990, §II.27. Zbl0734.58005MR1066693
- [H] G. Heckman, Projection of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups, Invent. Math.67 (1982), 333-356. Zbl0497.22006MR665160
- [He] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, Orlando, San Diego, New York, 1978, Chap. VIII. Zbl0451.53038MR514561
- [Hö] L. Hörmander, The analysis of linear partial differential operatorsI, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1990, §7.4. MR404822
- [HC1] Harish-Chandra, Invariant differential operators on a semi-simple Lie algebra, Proc. Nat. Acad. Sci. U. S. A.42 (1956), 252-253. Zbl0072.02001MR80260
- [HC2] Harish-Chandra, Representations of semisimple Lie groups IV, Amer. J. Math.77 (1955), 743-777. Zbl0066.35603MR72427
- [JK] L.C. Jeffrey and F.C. Kirwan, Localization for nonabelian group actions, preprint, alg-geom/9307001, 1993. MR1318878
- [K1] A. Knapp, Bounded symmetric domains and holomorphic discrete series, Symmetric spaces, Eds. W. M. Boothby and G. L. Weiss, Marcel Dekker, Inc., New York, 1972, pp.211-246. Zbl0242.32022MR460544
- [K2] A. Knapp, Representation theory of semisimple Lie groups, Princeton University Press, Princeton, 1986, Chap. VI. Zbl0604.22001MR855239
- [P] E. Prato, Convexity properties of the moment map for certain non-compact manifolds, preprint (1992), to appear in Comm. Anal. Geom. Zbl0842.58034MR1312689
- [W] S. Wu, An integration formula for the square of moment maps of circle actions, Lett. Math. Phys.29 (1993), 311-328. Zbl0793.53035MR1257832
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.