Units from 3- and 4-torsion on jacobians of curves of genus 2

David Grant

Compositio Mathematica (1994)

  • Volume: 94, Issue: 3, page 311-320
  • ISSN: 0010-437X

How to cite


Grant, David. "Units from 3- and 4-torsion on jacobians of curves of genus 2." Compositio Mathematica 94.3 (1994): 311-320. <http://eudml.org/doc/90339>.

author = {Grant, David},
journal = {Compositio Mathematica},
keywords = {torsion; curve of genus 2; number field; Jacobian; units},
language = {eng},
number = {3},
pages = {311-320},
publisher = {Kluwer Academic Publishers},
title = {Units from 3- and 4-torsion on jacobians of curves of genus 2},
url = {http://eudml.org/doc/90339},
volume = {94},
year = {1994},

AU - Grant, David
TI - Units from 3- and 4-torsion on jacobians of curves of genus 2
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 94
IS - 3
SP - 311
EP - 320
LA - eng
KW - torsion; curve of genus 2; number field; Jacobian; units
UR - http://eudml.org/doc/90339
ER -


  1. [B-K] W.L. Baily and M.L. Karel, appendix to: W.L. Baily, Reciprocity laws for special values of Hilbert modular functions, in Algebra and Topology (1986) 62-139, Korea Inst. Tech., Taejon, 1987. MR957926
  2. [Bo] J. Boxall: Valeurs spéciales de fonctions abéliennes, Groupe d'Etude sur les Problémes Diophantiens 1990-91, Publications Mathématiques de l'Université Pierre et Marie Curie No. 103. 
  3. [BaBo] E. Bavencoffe and J. Boxall: Valeurs des fonctions thêta associées a la courbe y2 = x5 - 1, Séminaire de Théories des Nombres de Caen 1991/2. 
  4. [BoBa] J. Boxall and E. Bavencoffe: Quelques propriétés arithmétiques des points de 3-division de la jacobienne de y2 = x5 - 1, Séminaire de Théories des Nombres, Bordeaux4 (1992) 113-128. Zbl0766.14019MR1183921
  5. [CW] J. Coates and A. Wiles: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39 (1977) 223-251. Zbl0359.14009MR463176
  6. [deS] E. de Shalit: Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspectives in Mathematics3, Academic Press, Orlando, 1987. Zbl0674.12004MR917944
  7. [F] A. Fröhlich: Formal Groups, Lecture Notes in Math. 74, Springer-Verlag, Berlin, 1968. Zbl0177.04801MR242837
  8. [G1] D. Grant: Formal groups in genus two, J. reine. angew. Math.411 (1990) 96-121. Zbl0702.14025MR1072975
  9. [G2] D. Grant: On a generalization of a formula of Eisenstein, Proc. London Math. Soc.3 (1991) 121-132. Zbl0738.14019MR1078216
  10. [G3] D. Grant: Some product formulas for genus 2 theta functions, preprint. 
  11. [I] J.-I. Igusa: Arithmetic variety of moduli for genus two, Ann. Math.72(3) (1960) 612-649. Zbl0122.39002MR114819
  12. [K] V.A. Kolyvagin: Euler systems, in The Grothendieck Festschrift II, Prog. Math.87 (1990) 435-483. Zbl0742.14017MR1106906
  13. [M] D. Mumford:Tata Lectures on Theta II.Prog. Math.43 (Birkhäuser, Boston) 1984. Zbl0549.14014MR742776
  14. [Ro] G. Robert: Unités elliptiques, Bull. Soc. Math. France. Mémoire36 (1973). Zbl0314.12006MR469889
  15. [Ru1] K. Rubin: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math.89 (1987) 527-560. Zbl0628.14018MR903383
  16. [Ru2] K. Rubin: The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math.103 (1991) 25-68. Zbl0737.11030MR1079839
  17. [S] H. Stark: L-functions at s = 1. IV. First derivatives at s = 0, Adv. Math.35(3) (1980) 197-235. Zbl0475.12018MR563924

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.