Commuting difference operators with polynomial eigenfunctions

J. F. Van Diejen

Compositio Mathematica (1995)

  • Volume: 95, Issue: 2, page 183-233
  • ISSN: 0010-437X

How to cite

top

Van Diejen, J. F.. "Commuting difference operators with polynomial eigenfunctions." Compositio Mathematica 95.2 (1995): 183-233. <http://eudml.org/doc/90347>.

@article{VanDiejen1995,
author = {Van Diejen, J. F.},
journal = {Compositio Mathematica},
keywords = {multivariable polynomials; root system; difference operators; Macdonald polynomials; differential operators},
language = {eng},
number = {2},
pages = {183-233},
publisher = {Kluwer Academic Publishers},
title = {Commuting difference operators with polynomial eigenfunctions},
url = {http://eudml.org/doc/90347},
volume = {95},
year = {1995},
}

TY - JOUR
AU - Van Diejen, J. F.
TI - Commuting difference operators with polynomial eigenfunctions
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 95
IS - 2
SP - 183
EP - 233
LA - eng
KW - multivariable polynomials; root system; difference operators; Macdonald polynomials; differential operators
UR - http://eudml.org/doc/90347
ER -

References

top
  1. 1 Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials. Mem. Amer. Math. Soc.319 (1985) Zbl0572.33012
  2. 2 Beerends, R.J., Koomwinder, T.H.: Analysis on root systems: An-1 as limit case of BCn. In preparation MR1060823
  3. 3 Bourbaki, N.: Groupes et algèbres de Lie, Chaps. 4-6. Paris: Hermann1968 MR240238
  4. 4 Calogero, F.: Solutions of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys.12, 419-436 (1971) Zbl1002.70558MR280103
  5. 5 Cherednik, I.: Quantum Knizhnik-Zamolodchikov equations and affine root systems. Commun. Math. Phys.150, 109-136 (1992) Zbl0849.17025MR1188499
  6. 6 Cherednik, I.: Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald's operators. Int. Math. Res. Not. no. 9, 171-180 (1992) Zbl0770.17004MR1185831
  7. 7 Debiard, A.: Système différentiel hypergéométrique de type BCp. C. R. Acad. Sc. Paris304 (Série I), 363-366 (1987) Zbl0616.33009MR889739
  8. 8 Debiard, A.: Parties radiales des opérateurs invariants des espaces symétriques de type BCp: intégrales premières d'un hamiltonien à symétrie BCp. C. R. Acad. Sc. Paris304 (Série I), 415-417 (1987) Zbl0626.58023MR888236
  9. 9 Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Compos. Math.64, 329-352 (1987) Zbl0656.17006MR918416
  10. 10 Heckman, G.J.: Root systems and hypergeometric functions II. Compos. Math.64, 353-373 (1987) Zbl0656.17007MR918417
  11. 11 Heckman, G.J.: An elementary approach to the hypergeometric shift operator of Opdam. Invent. Math.103, 341-350 (1991) Zbl0721.33009MR1085111
  12. 12 Inozemtsev, V.I.: Lax representation with spectral parameter on a torus for integrable particle systems. Lett. Math. Phys.17, 11-17 (1989) Zbl0679.70005MR990577
  13. 13 Koornwinder, T.H.: private notes (1987) 
  14. 14 Koornwinder, T.H.: Jacobi functions as limit cases of q-ultraspherical polynomials. J. Math. Anal. and Appl.148, 44-54 (1990) Zbl0713.33010MR1052043
  15. 15 Koornwinder, T.H.: Orthogonal polynomials in connection with quantum groups. In: Nevai, P. (ed.), Orthogonal polynomials: theory and practice. NATO ASI Series C294, pp. 257-292. Dordrecht: Kluwer Academic Publishers1990 Zbl0697.42019MR1100297
  16. 16 Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type BC. In: Richards, D. St. P. (ed.), Hypergeometric functions on domains of positivity, Jack polynomials, and applications. Contemp. Math.138, pp. 189-204 (1992) Zbl0797.33014MR1199128
  17. 17 Koornwinder, T.H.: Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group. SIAM J. Math. Anal.24, 795-813 (1993) Zbl0799.33015MR1215439
  18. 18 Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press1979 Zbl0487.20007MR553598
  19. 19 Macdonald, I.G.: Commuting differential operators and zonal spherical functions. In: Cohen, A. M., e. a. (eds.), Algebraic groups Utrecht 1986. Lect. Notes in Math.1271, pp. 189-200. Berlin: Springer1987 Zbl0629.43010MR911140
  20. 20 Macdonald, I.G.: Orthogonal polynomials associated with root systems. Preprint, Univ. of London (1988) Zbl1032.33010MR1100299
  21. 21 Macdonald, I.G.: A new class of symmetric functions. In: Cerlienco, L., Foata, D. (eds.), Actes 20e Séminaire Lotharingien Combinatoire, pp. 131-171. Strasbourg: Publ. I. R. M. A.1988 Zbl0962.05507
  22. 22 Macdonald, I.G.: Orthogonal polynomials associated with root systems. In: Nevai, P. (ed.), Orthogonal polynomials: theory and practice. NATO ASI Series C294, pp. 311-318. Dordrecht: Kluwer Academic Publishers1990 Zbl0699.42010MR1100299
  23. 23 Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math.16, 197-220 (1975) Zbl0303.34019MR375869
  24. 24 Noumi, M.: Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. To appear in Adv. in Math. Zbl0874.33011
  25. 25 Opdam, E.M.: Root systems and hypergeometric functions III. Compos. Math.67, 21-49 (1988) Zbl0669.33007MR949270
  26. 26 Opdam, E.M.: Root systems and hypergeometric functions IV. Compos. Math.67, 191-209 (1988) Zbl0669.33008MR951750
  27. 27 Olshanetsky, M.A., Perelomov, A.M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Reps.71, 313-400 (1981) MR615898
  28. 28 Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Reps.94, 313-404 (1983) Zbl0366.58005MR708017
  29. 29 Ruijsenaars, S.N.M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. (N.Y.) 170,370-405 (1986) Zbl0608.35071MR851627
  30. 30 Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Phys.110, 191-213 (1987) Zbl0673.58024MR887995
  31. 31 Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In.: Kupershmidt, B. (ed.), Integrable and superintegrable systems. pp. 165-206. Singapore: World Scientific1990 Zbl0943.00022MR1091264
  32. 32 Ruijsenaars, S.N.M.: private notes (1993) 
  33. 33 Sekiguchi, J.: Zonal spherical functions on some symmetric spaces. Publ. RIMS Kyoto Univ.12 Suppl., 455-459 (1977) Zbl0383.43005MR461040
  34. 34 Serre, J.P.: Complex semisimple Lie algebras. New York: Springer1987 Zbl0628.17003MR914496
  35. 35 Sutherland, B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A4, 2019-2021 (1971) 
  36. 36 Sutherland, B.: Exact results for a quantum many-body problem in one dimension II. Phys. Rev. A5, 1372-1376 (1972) 
  37. 37 van Diejen, J.F.: Integrability of difference Calogero-Moser systems. J. Math. Phys.35, 2983-3004 (1994) Zbl0805.58027MR1275485
  38. 38 van Diejen, J.F.: Deformations of Calogero-Moser systems and finite Toda chains. To appear in Theoret. and Math. Phys.99, no. 2 Zbl0851.58021MR1308784
  39. 39 van Diejen, J.F.: Difference Calogero-Moser systems and finite Toda chains. To appear in J. Math. Phys. Zbl0851.70016MR1317442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.