Commuting difference operators with polynomial eigenfunctions
Compositio Mathematica (1995)
- Volume: 95, Issue: 2, page 183-233
- ISSN: 0010-437X
Access Full Article
topHow to cite
topVan Diejen, J. F.. "Commuting difference operators with polynomial eigenfunctions." Compositio Mathematica 95.2 (1995): 183-233. <http://eudml.org/doc/90347>.
@article{VanDiejen1995,
author = {Van Diejen, J. F.},
journal = {Compositio Mathematica},
keywords = {multivariable polynomials; root system; difference operators; Macdonald polynomials; differential operators},
language = {eng},
number = {2},
pages = {183-233},
publisher = {Kluwer Academic Publishers},
title = {Commuting difference operators with polynomial eigenfunctions},
url = {http://eudml.org/doc/90347},
volume = {95},
year = {1995},
}
TY - JOUR
AU - Van Diejen, J. F.
TI - Commuting difference operators with polynomial eigenfunctions
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 95
IS - 2
SP - 183
EP - 233
LA - eng
KW - multivariable polynomials; root system; difference operators; Macdonald polynomials; differential operators
UR - http://eudml.org/doc/90347
ER -
References
top- 1 Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials. Mem. Amer. Math. Soc.319 (1985) Zbl0572.33012
- 2 Beerends, R.J., Koomwinder, T.H.: Analysis on root systems: An-1 as limit case of BCn. In preparation MR1060823
- 3 Bourbaki, N.: Groupes et algèbres de Lie, Chaps. 4-6. Paris: Hermann1968 MR240238
- 4 Calogero, F.: Solutions of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys.12, 419-436 (1971) Zbl1002.70558MR280103
- 5 Cherednik, I.: Quantum Knizhnik-Zamolodchikov equations and affine root systems. Commun. Math. Phys.150, 109-136 (1992) Zbl0849.17025MR1188499
- 6 Cherednik, I.: Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald's operators. Int. Math. Res. Not. no. 9, 171-180 (1992) Zbl0770.17004MR1185831
- 7 Debiard, A.: Système différentiel hypergéométrique de type BCp. C. R. Acad. Sc. Paris304 (Série I), 363-366 (1987) Zbl0616.33009MR889739
- 8 Debiard, A.: Parties radiales des opérateurs invariants des espaces symétriques de type BCp: intégrales premières d'un hamiltonien à symétrie BCp. C. R. Acad. Sc. Paris304 (Série I), 415-417 (1987) Zbl0626.58023MR888236
- 9 Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Compos. Math.64, 329-352 (1987) Zbl0656.17006MR918416
- 10 Heckman, G.J.: Root systems and hypergeometric functions II. Compos. Math.64, 353-373 (1987) Zbl0656.17007MR918417
- 11 Heckman, G.J.: An elementary approach to the hypergeometric shift operator of Opdam. Invent. Math.103, 341-350 (1991) Zbl0721.33009MR1085111
- 12 Inozemtsev, V.I.: Lax representation with spectral parameter on a torus for integrable particle systems. Lett. Math. Phys.17, 11-17 (1989) Zbl0679.70005MR990577
- 13 Koornwinder, T.H.: private notes (1987)
- 14 Koornwinder, T.H.: Jacobi functions as limit cases of q-ultraspherical polynomials. J. Math. Anal. and Appl.148, 44-54 (1990) Zbl0713.33010MR1052043
- 15 Koornwinder, T.H.: Orthogonal polynomials in connection with quantum groups. In: Nevai, P. (ed.), Orthogonal polynomials: theory and practice. NATO ASI Series C294, pp. 257-292. Dordrecht: Kluwer Academic Publishers1990 Zbl0697.42019MR1100297
- 16 Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type BC. In: Richards, D. St. P. (ed.), Hypergeometric functions on domains of positivity, Jack polynomials, and applications. Contemp. Math.138, pp. 189-204 (1992) Zbl0797.33014MR1199128
- 17 Koornwinder, T.H.: Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group. SIAM J. Math. Anal.24, 795-813 (1993) Zbl0799.33015MR1215439
- 18 Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press1979 Zbl0487.20007MR553598
- 19 Macdonald, I.G.: Commuting differential operators and zonal spherical functions. In: Cohen, A. M., e. a. (eds.), Algebraic groups Utrecht 1986. Lect. Notes in Math.1271, pp. 189-200. Berlin: Springer1987 Zbl0629.43010MR911140
- 20 Macdonald, I.G.: Orthogonal polynomials associated with root systems. Preprint, Univ. of London (1988) Zbl1032.33010MR1100299
- 21 Macdonald, I.G.: A new class of symmetric functions. In: Cerlienco, L., Foata, D. (eds.), Actes 20e Séminaire Lotharingien Combinatoire, pp. 131-171. Strasbourg: Publ. I. R. M. A.1988 Zbl0962.05507
- 22 Macdonald, I.G.: Orthogonal polynomials associated with root systems. In: Nevai, P. (ed.), Orthogonal polynomials: theory and practice. NATO ASI Series C294, pp. 311-318. Dordrecht: Kluwer Academic Publishers1990 Zbl0699.42010MR1100299
- 23 Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math.16, 197-220 (1975) Zbl0303.34019MR375869
- 24 Noumi, M.: Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. To appear in Adv. in Math. Zbl0874.33011
- 25 Opdam, E.M.: Root systems and hypergeometric functions III. Compos. Math.67, 21-49 (1988) Zbl0669.33007MR949270
- 26 Opdam, E.M.: Root systems and hypergeometric functions IV. Compos. Math.67, 191-209 (1988) Zbl0669.33008MR951750
- 27 Olshanetsky, M.A., Perelomov, A.M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Reps.71, 313-400 (1981) MR615898
- 28 Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Reps.94, 313-404 (1983) Zbl0366.58005MR708017
- 29 Ruijsenaars, S.N.M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. (N.Y.) 170,370-405 (1986) Zbl0608.35071MR851627
- 30 Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Phys.110, 191-213 (1987) Zbl0673.58024MR887995
- 31 Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In.: Kupershmidt, B. (ed.), Integrable and superintegrable systems. pp. 165-206. Singapore: World Scientific1990 Zbl0943.00022MR1091264
- 32 Ruijsenaars, S.N.M.: private notes (1993)
- 33 Sekiguchi, J.: Zonal spherical functions on some symmetric spaces. Publ. RIMS Kyoto Univ.12 Suppl., 455-459 (1977) Zbl0383.43005MR461040
- 34 Serre, J.P.: Complex semisimple Lie algebras. New York: Springer1987 Zbl0628.17003MR914496
- 35 Sutherland, B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A4, 2019-2021 (1971)
- 36 Sutherland, B.: Exact results for a quantum many-body problem in one dimension II. Phys. Rev. A5, 1372-1376 (1972)
- 37 van Diejen, J.F.: Integrability of difference Calogero-Moser systems. J. Math. Phys.35, 2983-3004 (1994) Zbl0805.58027MR1275485
- 38 van Diejen, J.F.: Deformations of Calogero-Moser systems and finite Toda chains. To appear in Theoret. and Math. Phys.99, no. 2 Zbl0851.58021MR1308784
- 39 van Diejen, J.F.: Difference Calogero-Moser systems and finite Toda chains. To appear in J. Math. Phys. Zbl0851.70016MR1317442
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.