Relative generic singularities of the exponential map

S. Janeczko; T. Mostowski

Compositio Mathematica (1995)

  • Volume: 96, Issue: 3, page 345-370
  • ISSN: 0010-437X

How to cite

top

Janeczko, S., and Mostowski, T.. "Relative generic singularities of the exponential map." Compositio Mathematica 96.3 (1995): 345-370. <http://eudml.org/doc/90368>.

@article{Janeczko1995,
author = {Janeczko, S., Mostowski, T.},
journal = {Compositio Mathematica},
keywords = {generic singularities; exponential map; germ; geodesic curve; Hamiltonian},
language = {eng},
number = {3},
pages = {345-370},
publisher = {Kluwer Academic Publishers},
title = {Relative generic singularities of the exponential map},
url = {http://eudml.org/doc/90368},
volume = {96},
year = {1995},
}

TY - JOUR
AU - Janeczko, S.
AU - Mostowski, T.
TI - Relative generic singularities of the exponential map
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 96
IS - 3
SP - 345
EP - 370
LA - eng
KW - generic singularities; exponential map; germ; geodesic curve; Hamiltonian
UR - http://eudml.org/doc/90368
ER -

References

top
  1. 1 Arnold, V.I., Gusein-Zade, S.M. and Varchenko, A.N.: Singularities of Differentiable Maps, vol. 1. Birkhauser, Boston, 1985. Engl. ed. Zbl1297.32001MR777682
  2. 2 Arnold, V.I.: Mathematical Methods of Classical Mechanics. Second Edition, Graduate Texts in Math. 60, Springer-Verlag, 1989. Zbl0386.70001MR997295
  3. 3 Buchner, M.A.: Stability of the cut locus in dimensions less than or equal to 6. Inventiones Math.43 (1977) 199-231. Zbl0365.58010MR482816
  4. 4 Janeczko, S.: On isotropic submanifolds and evolution of quasicaustics. Pacific J. of Math.158 No. 2 (1993) 317-334. Zbl0806.58023MR1206441
  5. 5 Klok, F.: Generic singularities of the exponential map of Riemannian manifolds. Preprint Mathematisch Instituut, Rijksuniversiteit Groningen, ZW-8022. Zbl0529.53036MR723376
  6. 6 Lang, S.: Introduction to Differentiable Manifolds. New York, London1962. Zbl0103.15101MR155257
  7. 7 Lojasiewicz, S.: Ensembles semi-analytiques, IHES, 1965. 
  8. 8 Mond, D.: On the classification of germs of maps from R2 to R3. Proc. London Math. Soc. (3), 50 (1985) 333-369. Zbl0557.58006MR772717
  9. 9 Strichartz, R.S.: Sub-Riemannian geometry. J. Differential Geometry24 (1986) 221-263. Zbl0609.53021MR862049
  10. 10 Strichartz, R.S.: Corrections to "Sub-Riemannian Geometry" , J. Differential Geometry30 (1989) 595-596. Zbl0609.53021MR1010174
  11. 11 Wall, C.T.: Geometric properties of generic differentiable manifolds. Lecture Notes in Math.597 (1977) 707-774. Zbl0361.58004MR494233
  12. 12 Weinstein, A.: The generic conjugate locus. In Global Analysis, Proc. Symp. in Pure Math.15 (1970) 299-302. Zbl0205.25803MR271993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.