Relative generic singularities of the exponential map
Compositio Mathematica (1995)
- Volume: 96, Issue: 3, page 345-370
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- 1 Arnold, V.I., Gusein-Zade, S.M. and Varchenko, A.N.: Singularities of Differentiable Maps, vol. 1. Birkhauser, Boston, 1985. Engl. ed. Zbl1297.32001MR777682
- 2 Arnold, V.I.: Mathematical Methods of Classical Mechanics. Second Edition, Graduate Texts in Math. 60, Springer-Verlag, 1989. Zbl0386.70001MR997295
- 3 Buchner, M.A.: Stability of the cut locus in dimensions less than or equal to 6. Inventiones Math.43 (1977) 199-231. Zbl0365.58010MR482816
- 4 Janeczko, S.: On isotropic submanifolds and evolution of quasicaustics. Pacific J. of Math.158 No. 2 (1993) 317-334. Zbl0806.58023MR1206441
- 5 Klok, F.: Generic singularities of the exponential map of Riemannian manifolds. Preprint Mathematisch Instituut, Rijksuniversiteit Groningen, ZW-8022. Zbl0529.53036MR723376
- 6 Lang, S.: Introduction to Differentiable Manifolds. New York, London1962. Zbl0103.15101MR155257
- 7 Lojasiewicz, S.: Ensembles semi-analytiques, IHES, 1965.
- 8 Mond, D.: On the classification of germs of maps from R2 to R3. Proc. London Math. Soc. (3), 50 (1985) 333-369. Zbl0557.58006MR772717
- 9 Strichartz, R.S.: Sub-Riemannian geometry. J. Differential Geometry24 (1986) 221-263. Zbl0609.53021MR862049
- 10 Strichartz, R.S.: Corrections to "Sub-Riemannian Geometry" , J. Differential Geometry30 (1989) 595-596. Zbl0609.53021MR1010174
- 11 Wall, C.T.: Geometric properties of generic differentiable manifolds. Lecture Notes in Math.597 (1977) 707-774. Zbl0361.58004MR494233
- 12 Weinstein, A.: The generic conjugate locus. In Global Analysis, Proc. Symp. in Pure Math.15 (1970) 299-302. Zbl0205.25803MR271993