On the structure of the group scheme
Tsutomu Sekiguchi; Noriyuki Suwa
Compositio Mathematica (1995)
- Volume: 97, Issue: 1-2, page 253-271
 - ISSN: 0010-437X
 
Access Full Article
topHow to cite
topSekiguchi, Tsutomu, and Suwa, Noriyuki. "On the structure of the group scheme $\mathbb {Z}[\mathbb {Z} / p^n]^\times $." Compositio Mathematica 97.1-2 (1995): 253-271. <http://eudml.org/doc/90378>.
@article{Sekiguchi1995,
	author = {Sekiguchi, Tsutomu, Suwa, Noriyuki},
	journal = {Compositio Mathematica},
	keywords = {unit group of group algebra; group scheme; cyclic group of prime power order; Kummer-Artin-Schreier-Witt theories},
	language = {eng},
	number = {1-2},
	pages = {253-271},
	publisher = {Kluwer Academic Publishers},
	title = {On the structure of the group scheme $\mathbb \{Z\}[\mathbb \{Z\} / p^n]^\times $},
	url = {http://eudml.org/doc/90378},
	volume = {97},
	year = {1995},
}
TY  - JOUR
AU  - Sekiguchi, Tsutomu
AU  - Suwa, Noriyuki
TI  - On the structure of the group scheme $\mathbb {Z}[\mathbb {Z} / p^n]^\times $
JO  - Compositio Mathematica
PY  - 1995
PB  - Kluwer Academic Publishers
VL  - 97
IS  - 1-2
SP  - 253
EP  - 271
LA  - eng
KW  - unit group of group algebra; group scheme; cyclic group of prime power order; Kummer-Artin-Schreier-Witt theories
UR  - http://eudml.org/doc/90378
ER  - 
References
top- [1] S. Annantharaman, 'Schémas en groupes, espaces homogénes et espaces algébriques sur une base de dimension 1', Bull. Soc. Math. France, Mémoire 33 (1973). Zbl0286.14001MR335524
 - [2] M. Demazure and P. Gabriel, Groupes algébriques, Tome 1, Masson-North-Holland, 1970. Zbl0203.23401
 - [3] G. Karpilovsky, Unit groups of group rings, Longman Scientific and Technical, 1989. Zbl0687.16010MR1042757
 - [4] F. Oort, Commutative group schemes, Lecture Notes in Math.Springer, Vol. 15, 1966. Zbl0216.05603MR213365
 - [5] T. Sekiguchi, 'On the deformation of Witt groups to toriII' J. of Algebra138 (1991) 273-297. Zbl0735.14033MR1102811
 - [6] T. Sekiguchi and N. Suwa, 'A case of extensions of group schemes over a discrete valuation ring', Tsukuba J. Math.14 (1990) 459-487. Zbl0755.14014MR1085212
 - [7] T. Sekiguchi and N. Suwa, 'Théorie de Kummer-Artin-Schreier', C.R. Acad. Sci.Paris, 312 (1991) 417-420. Zbl0743.14030MR1096623
 - [8] T. Sekiguchi and N. Suwa, 'Théories de Kummer-Artin-Schreier-Witt ', C.R. Acad. Sci.Paris319 (1994) 105-110. Zbl0845.14023MR1288386
 - [9] T. Sekiguchi and N. Suwa, 'Théorie de Kummer-Artin-Schreier et applications', (to appear in the Proceedings of Journées Arithmétiques Bordeaux1993). Zbl0920.14023MR1413576
 - [10] T. Sekiguchi and N. Suwa, 'On the unified Kummer-Artin-Schreier-Witt theory', Preprint series, Chuo-Math.41 (1994). Zbl0845.14023MR1288386
 - [11] T. Sekiguchi and N. Suwa, 'On the unit group schemes of commutative group algebras' (in preparation). Zbl0755.14014
 - [12] T. Sekiguchi, F. Oort and N. Suwa, 'On the deformation of Artin-Schreier to Kummer', Ann. Scient. Ec. Normale Sup.22 (1989) 345-375. Zbl0714.14024MR1011987
 - [13] J-P. Serre, Groupes algébriques et corps de classes, Hermann, 1959. Zbl0097.35604
 - [14] W.C. Waterhouse, 'A unified Kummer-Artin-Schreier sequence', Math. Ann.277 (1987) 447-451. Zbl0608.12026MR891585
 - [15] W.C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Math, Vol. 66, Springer, 1979. Zbl0442.14017MR547117
 - [16] W.C. Waterhouse and B. Weisfeiler, 'One-dimensional affine group schemes ', J. of Algebra66 (1980) 550-568. Zbl0452.14013MR593611
 - [17] A. Grothendieck et A. Dieudonné, Eléments de géométrie algébriques I, Springer, 1971. Zbl0203.23301
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.