Connectedness results for l -adic representations associated to abelian varieties

A. Silverberg; Yu G. Zarhin

Compositio Mathematica (1995)

  • Volume: 97, Issue: 1-2, page 273-284
  • ISSN: 0010-437X

How to cite

top

Silverberg, A., and Zarhin, Yu G.. "Connectedness results for $l$-adic representations associated to abelian varieties." Compositio Mathematica 97.1-2 (1995): 273-284. <http://eudml.org/doc/90379>.

@article{Silverberg1995,
author = {Silverberg, A., Zarhin, Yu G.},
journal = {Compositio Mathematica},
language = {eng},
number = {1-2},
pages = {273-284},
publisher = {Kluwer Academic Publishers},
title = {Connectedness results for $l$-adic representations associated to abelian varieties},
url = {http://eudml.org/doc/90379},
volume = {97},
year = {1995},
}

TY - JOUR
AU - Silverberg, A.
AU - Zarhin, Yu G.
TI - Connectedness results for $l$-adic representations associated to abelian varieties
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 273
EP - 284
LA - eng
UR - http://eudml.org/doc/90379
ER -

References

top
  1. 1 F.A. Bogomolov, Sur l'algébricité des représentations l-adiques, C.R.A.S. Paris290 (1980) 701-703. Zbl0457.14020
  2. 2 A. Borel, Linear Algebraic Groups (Second Enlarged Edition), Springer-Verlag, New York, 1991. Zbl0726.20030MR1102012
  3. 3 M. Borovoi, The action of the Galois group on the rational cohomology classes of type (p, p) of abelian varieties (Russian), Mat. Sbornik (N. S.) 94 (136) (1974) 649-652 = Math. USSR Sbornik 23 (1974) 613-616. Zbl0326.14013MR352101
  4. 4 M. Borovoi, The Shimura-Deligne schemes Mc (G, h) and the rational cohomology classes of type (p, p) of abelian varieties (Russian), Problems of group theory and homological algebra, No. 1 (Russian), pp. 3-53, Yaroslav. Gos. Univ., Yaroslavl', 1977. Zbl0417.14028MR548334
  5. 5 W. Chi, l-adic and λ-adic representations associated to abelian varieties defined over number fields, Amer. J. Math. 114 (1992) 315-353. Zbl0795.14024
  6. 6. Deligne (notes by J. Milne), Hodge cycles on abelian varieties, in Hodge cycles, motives, and Shimura varieties ( P. Deligne, J. Milne, A. Ogus, K.-Y. Shih), Lecture Notes in Mathematics900, Springer-Verlag, Berlin-Heidelberg-New York, 1982, pp. 9-100. Zbl0537.14006
  7. 7 G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983) 349-366. Zbl0588.14026MR718935
  8. 8 G. Faltings, Complements to Mordell, Chapter VI of Rational Points (G. Faltings, G. Wüstholz, et al.) (Third Enlarged Edition), Friedr. Vieweg & Sohn, Braunschweig/ Wiesbaden, 1992. MR766568
  9. 9 A. Grothendieck, Modèles de Néron et monodromie, in Groupes de monodromie en géometrie algébrique, SGA7 I (A. Grothendieck, ed.), Lecture Notes in Math.288, Springer, Berlin-Heidelberg -New York, 1972, pp. 313-523. Zbl0248.14006MR354656
  10. 10 J.E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics 21, Springer-Verlag, New York- Heidelberg-Berlin, 1975. Zbl0325.20039MR396773
  11. 11 L. Moret-Bailly, Pinceaux de Variétés Abéliennes, Astérisque129 (1985). Zbl0595.14032MR797982
  12. 12 S. Mori, On Tate conjecture concerning endomorphisms of abelian varieties, in Proceedings of the International Symposium on Algebraic Geometry, Kyoto1977 (M. Nagata, ed.), Kinokuniya Book-store Co., Ltd., Tokyo, 1978. Zbl0421.14007MR578861
  13. 13 I.I. Piatetski-Shapiro, Interrelations between the Tate and Hodge conjectures for abelian varieties (Russian), Mat. Sbornik85 (1971) 610-620 = Math. USSR Sbornik 14 (1971) 615-625. Zbl0239.14019MR294352
  14. 14 K. Ribet, Hodge classes on certain types of abelian varieties, Amer. J. Math.105 (1983) 523-538. Zbl0586.14003MR701568
  15. 15 J.-P. Serre, Représentations l-adiques, in Algebraic Number Theory (Proceedings of the International Taniguchi Symposium, Kyoto, 1976) (S. Iyanaga, ed.), Japan Society for the Promotion of Science, Tokyo, 1977, pp. 177-193. Zbl0406.14015MR476753
  16. 16 J.-P. Serre, Letters to K. Ribet, Jan. 1, 1981 and Jan. 29, 1981. 
  17. 17 J.-P. Serre, Résumé des cours de 1985-1986, Collège de France. 
  18. 18 J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques, in Motives (U. Jannsen, S. Kleiman, J.-P. Serre, eds.), Proc. Symp. Pure Math 55 (1994), Part 1, pp. 377-400. Zbl0812.14002MR1265537
  19. 19 A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure and Applied Algebra77 (1992) 253-262. Zbl0808.14037MR1154704
  20. 20 A. Silverberg, Yu. G. Zarhin, Isogenies of abelian varieties, J. Pure and Applied Algebra90 (1993) 23-37. Zbl0832.14034MR1246271
  21. 21 A. Silverberg, Yu. G. Zarhin, Variations on a theme of Minkowski and Serre, to appear in J. Pure and Applied Algebra. Zbl0885.14006MR1394358
  22. 22 A. Silverberg, Yu. G. Zarhin, Semistable reduction and torsion subgroups of abelian varieties, to appear in Ann. Inst. Fourier45, 2 (1995). Zbl0818.14017MR1343556
  23. 23 A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948. Zbl0037.16202MR29522
  24. 24 A. Well, Basic Number Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1967. Zbl0176.33601
  25. 25 Yu. G. Zarhin, Endomorphisms of abelian varieties over fields offinite characteristic (Russian), Izv. Akad. Nauk SSSR Ser. Mat.39 (1975) 272-277 = Math. USSR - Izv. 9 (1975) 255-260. Zbl0345.14014MR371897
  26. 26 Yu. G. Zarhin, Abelian varieties in characteristic p (Russian), Mat. Zametki19 (1976) 393-400Math. Notes19 (1976) 240-244. Zbl0342.14011MR422287
  27. 27 Yu. G. Zarhin, Weights of simple Lie algebras in the cohomology of algebraic varieties (Russian), Izv. Akad. Nauk SSSR Ser. Mat.48 (1984) 264-304 = Math. USSR - Izv. 24 (1985) 245-282. Zbl0579.14019MR740792
  28. 28 Yu. G. Zarhin, A.N. Parshin, Finiteness problems in Diophantine Geometry, Amer. Math. Soc. Transl.143 (1989) 35-102. Zbl0672.14012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.