Semistable reduction and torsion subgroups of abelian varieties
Alice Silverberg; Yuri G. Zarhin
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 2, page 403-420
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSilverberg, Alice, and Zarhin, Yuri G.. "Semistable reduction and torsion subgroups of abelian varieties." Annales de l'institut Fourier 45.2 (1995): 403-420. <http://eudml.org/doc/75123>.
@article{Silverberg1995,
abstract = {The main result of this paper implies that if an abelian variety over a field $F$ has a maximal isotropic subgroup of $n$-torsion points all of which are defined over $F$, and $n\ge 5$, then the abelian variety has semistable reduction away from $n$. This result can be viewed as an extension of Raynaud’s theorem that if an abelian variety and all its $n$-torsion points are defined over a field $F$ and $n\ge 3$, then the abelian variety has semistable reduction away from $n$. We also give information about the Néron models in the cases where $n=2,3$ and 4.},
author = {Silverberg, Alice, Zarhin, Yuri G.},
journal = {Annales de l'institut Fourier},
keywords = {abelian variety; -torsion points; semistable reduction; Néron models},
language = {eng},
number = {2},
pages = {403-420},
publisher = {Association des Annales de l'Institut Fourier},
title = {Semistable reduction and torsion subgroups of abelian varieties},
url = {http://eudml.org/doc/75123},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Silverberg, Alice
AU - Zarhin, Yuri G.
TI - Semistable reduction and torsion subgroups of abelian varieties
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 2
SP - 403
EP - 420
AB - The main result of this paper implies that if an abelian variety over a field $F$ has a maximal isotropic subgroup of $n$-torsion points all of which are defined over $F$, and $n\ge 5$, then the abelian variety has semistable reduction away from $n$. This result can be viewed as an extension of Raynaud’s theorem that if an abelian variety and all its $n$-torsion points are defined over a field $F$ and $n\ge 3$, then the abelian variety has semistable reduction away from $n$. We also give information about the Néron models in the cases where $n=2,3$ and 4.
LA - eng
KW - abelian variety; -torsion points; semistable reduction; Néron models
UR - http://eudml.org/doc/75123
ER -
References
top- [1] B. BIRCH and W. KUYK, eds., Modular functions of one variable IV, Lecture Notes in Math. 476, Springer, New York, 1975, pp. 74-144. Zbl0315.14014
- [2] S. BOSCH, W. LÜTKEBOHMERT, M. RAYNAUD, Néron models, Springer, Berlin-Heidelberg-New York, 1990. Zbl0705.14001
- [3] B. EDIXHOVEN, Néron models and tame ramification, Comp. Math., 81 (1992), 291-306. Zbl0759.14033MR93a:14041
- [4] M. FLEXOR and J. OESTERLÉ, Sur les points de torsion des courbes elliptiques, Astérisque, Société Math. de France, 183 (1990), 25-36. Zbl0737.14004MR91g:11057
- [5] G. FREY, Some remarks concerning points of finite order on elliptic curves over global fields, Ark. Mat., 15 (1977), 1-19. Zbl0348.14018MR56 #15649
- [6] A. FRÖHLICH, Local fields, in Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Thompson Book Company, Washington, 1967, pp. 1-41.
- [7] A. GROTHENDIECK, Modèles de Néron et monodromie, in Groupes de monodromie en géometrie algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in Math. 288, Springer, Berlin-Heidelberg-New York, 1972, pp. 313-523. Zbl0248.14006MR50 #7134
- [8] H. LENSTRA and F. OORT, Abelian varieties having purely additive reduction, J. Pure and Applied Algebra, 36 (1985), 281-298. Zbl0557.14022MR86e:14020
- [9] D. LORENZINI, On the group of components of a Néron model, J. reine angew. Math., 445 (1993), 109-160. Zbl0781.14029MR94k:11065
- [10] H. MINKOWSKI, Gesammelte Abhandlungen, Bd. I, Leipzig, 1911, pp. 212-218 (Zur Theorie der positiven quadratischen Formen, J. reine angew. Math., 101 (1887), 196-202). JFM19.0189.01
- [11] D. MUMFORD, Abelian varieties, Second Edition, Tata Lecture Notes, Oxford University Press, London, 1974.
- [12] D. MUMFORD, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser, Boston-Basel-Stuttgart, 1984. Zbl0549.14014
- [13] J-P. SERRE, Rigidité du foncteur de Jacobi d'echelon n ≥ 3, Appendix to A. Grothendieck, Techniques de construction en géométrie analytique, X. Construction de l'espace de Teichmüller, Séminaire Henri Cartan, 1960/1961, no. 17.
- [14] J-P. SERRE and J. TATE, Good reduction of abelian varieties, Ann. of Math., 88 (1968), 492-517. Zbl0172.46101MR38 #4488
- [15] A. SILVERBERG and Yu. G. ZARHIN, Isogenies of abelian varieties, J. Pure and Applied Algebra, 90 (1993), 23-37. Zbl0832.14034MR94j:14040
- [16] J. H. SILVERMAN, The Néron fiber of abelian varieties with potential good reduction, Math. Ann., 264 (1983), 1-3. Zbl0497.14016MR85b:14059
- [17] A. WEIL, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948. Zbl0037.16202MR10,621d
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.