Local height functions and the Mordell-Weil theorem for Drinfeld modules
Compositio Mathematica (1995)
- Volume: 97, Issue: 3, page 349-368
- ISSN: 0010-437X
Access Full Article
topHow to cite
topPoonen, Bjorn. "Local height functions and the Mordell-Weil theorem for Drinfeld modules." Compositio Mathematica 97.3 (1995): 349-368. <http://eudml.org/doc/90388>.
@article{Poonen1995,
author = {Poonen, Bjorn},
journal = {Compositio Mathematica},
keywords = {Drinfeld modules; height functions; Mordell-Weil theorem; global function field},
language = {eng},
number = {3},
pages = {349-368},
publisher = {Kluwer Academic Publishers},
title = {Local height functions and the Mordell-Weil theorem for Drinfeld modules},
url = {http://eudml.org/doc/90388},
volume = {97},
year = {1995},
}
TY - JOUR
AU - Poonen, Bjorn
TI - Local height functions and the Mordell-Weil theorem for Drinfeld modules
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 3
SP - 349
EP - 368
LA - eng
KW - Drinfeld modules; height functions; Mordell-Weil theorem; global function field
UR - http://eudml.org/doc/90388
ER -
References
top- 1 Bass, H., Big projective modules are free, Illinois J. of Math.7 (1963) 24-31. Zbl0115.26003MR143789
- 2 Denis, L., Géométrie diophantienne sur les modules de Drinfeld, in: D. Goss, D. R. Hayes and M. I. Rosen (eds.) The Arithmetic of Function Fields, de Gruyter, Berlin (1992). Zbl0798.11022MR1196525
- 3 Denis, L., Hauteurs canoniques et modules de Drinfeld, Math. Ann.294 (1992) 213-223. Zbl0764.11027MR1183402
- 4 Drinfeld, V., Elliptic modules, Math. USSR Sb., 23 (1974) 561- 592. Zbl0321.14014
- 5 Fuchs, L., Infinite Abelian Groups, Vol. 1. Academic Press, New York (1970). Zbl0209.05503MR255673
- 6 Hayes, D., A brief introduction to Drinfeld modules, in: D. Goss, D. R. Hayes and M. I. Rosen (eds.) The Arithmetic of Function Fields, de Gruyter, Berlin (1992). Zbl0793.11015MR1196509
- 7 Jacobson, N., Basic Algebra II, W. H. Freeman, San Francisco (1980). Zbl0441.16001MR571884
- 8 Jarden, M., The Čebotarev density theorem for function fields: an elementary approach, Math. Ann.261 (1982) 467-475. Zbl0501.12018MR682659
- 9 Kaplansky, I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor (1969). Zbl0194.04402MR233887
- 10 Kaplansky, I., Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc.72 (1952) 327-340. Zbl0046.25701MR46349
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.