Local height functions and the Mordell-Weil theorem for Drinfeld modules

Bjorn Poonen

Compositio Mathematica (1995)

  • Volume: 97, Issue: 3, page 349-368
  • ISSN: 0010-437X

How to cite

top

Poonen, Bjorn. "Local height functions and the Mordell-Weil theorem for Drinfeld modules." Compositio Mathematica 97.3 (1995): 349-368. <http://eudml.org/doc/90388>.

@article{Poonen1995,
author = {Poonen, Bjorn},
journal = {Compositio Mathematica},
keywords = {Drinfeld modules; height functions; Mordell-Weil theorem; global function field},
language = {eng},
number = {3},
pages = {349-368},
publisher = {Kluwer Academic Publishers},
title = {Local height functions and the Mordell-Weil theorem for Drinfeld modules},
url = {http://eudml.org/doc/90388},
volume = {97},
year = {1995},
}

TY - JOUR
AU - Poonen, Bjorn
TI - Local height functions and the Mordell-Weil theorem for Drinfeld modules
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 3
SP - 349
EP - 368
LA - eng
KW - Drinfeld modules; height functions; Mordell-Weil theorem; global function field
UR - http://eudml.org/doc/90388
ER -

References

top
  1. 1 Bass, H., Big projective modules are free, Illinois J. of Math.7 (1963) 24-31. Zbl0115.26003MR143789
  2. 2 Denis, L., Géométrie diophantienne sur les modules de Drinfeld, in: D. Goss, D. R. Hayes and M. I. Rosen (eds.) The Arithmetic of Function Fields, de Gruyter, Berlin (1992). Zbl0798.11022MR1196525
  3. 3 Denis, L., Hauteurs canoniques et modules de Drinfeld, Math. Ann.294 (1992) 213-223. Zbl0764.11027MR1183402
  4. 4 Drinfeld, V., Elliptic modules, Math. USSR Sb., 23 (1974) 561- 592. Zbl0321.14014
  5. 5 Fuchs, L., Infinite Abelian Groups, Vol. 1. Academic Press, New York (1970). Zbl0209.05503MR255673
  6. 6 Hayes, D., A brief introduction to Drinfeld modules, in: D. Goss, D. R. Hayes and M. I. Rosen (eds.) The Arithmetic of Function Fields, de Gruyter, Berlin (1992). Zbl0793.11015MR1196509
  7. 7 Jacobson, N., Basic Algebra II, W. H. Freeman, San Francisco (1980). Zbl0441.16001MR571884
  8. 8 Jarden, M., The Čebotarev density theorem for function fields: an elementary approach, Math. Ann.261 (1982) 467-475. Zbl0501.12018MR682659
  9. 9 Kaplansky, I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor (1969). Zbl0194.04402MR233887
  10. 10 Kaplansky, I., Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc.72 (1952) 327-340. Zbl0046.25701MR46349

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.