The real Seifert form and the spectral pairs of isolated hypersurface singularities
Compositio Mathematica (1995)
- Volume: 98, Issue: 1, page 23-41
- ISSN: 0010-437X
Access Full Article
topHow to cite
topNémethi, András. "The real Seifert form and the spectral pairs of isolated hypersurface singularities." Compositio Mathematica 98.1 (1995): 23-41. <http://eudml.org/doc/90393>.
@article{Némethi1995,
author = {Némethi, András},
journal = {Compositio Mathematica},
keywords = {hypersurface singularity; spectral pairs; Hodge numbers; Milnor fiber; real Seifert form; canonical pairing; hermitian variation structures},
language = {eng},
number = {1},
pages = {23-41},
publisher = {Kluwer Academic Publishers},
title = {The real Seifert form and the spectral pairs of isolated hypersurface singularities},
url = {http://eudml.org/doc/90393},
volume = {98},
year = {1995},
}
TY - JOUR
AU - Némethi, András
TI - The real Seifert form and the spectral pairs of isolated hypersurface singularities
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 1
SP - 23
EP - 41
LA - eng
KW - hypersurface singularity; spectral pairs; Hodge numbers; Milnor fiber; real Seifert form; canonical pairing; hermitian variation structures
UR - http://eudml.org/doc/90393
ER -
References
top- 1 Arnold, V.I., Gusein-Zade, S.M. and Varchenko, A.N.: Singularities of Differentiable Mappings, Vol. 2, Birkhauser, Boston, 1988. Zbl1297.32001MR966191
- 2 Demazure, M.: Classification des germes a point critique isolé et a nombres de modules 0 ou 1 (d'apres Arnold). Sém. Bourbaki26e année 1973/ 74,443 (1974). Zbl0359.57012
- 3 Durfee, A. and Kaufman, L.: Periodicity of branched cyclic covers. Math. Ann.218 (1975) 157-174. Zbl0296.55001MR385872
- 4 Milnor, J.: On Isometries of Inner Product Spaces. Inventiones Math.8 (1969) 83-97. Zbl0177.05204MR249519
- 5 Némethi, A.: The equivariant signature of hypersurface singularities, will appear in Topology. Zbl0821.32030
- 6 Némethi, A.: The semi-ring structure and the spectral pairs of sesqui-linear forms, Algebra Colloq.1:1 (1994) 85-95. Zbl0814.11022MR1262666
- 7 Neumann, W.D.: Invariants of plane curve singularities. Monographie N° 31 de L'Enseignement Math. (1983). Zbl0586.14023MR728588
- 8 Sakamoto, K.: Milnor fiberings and their Characteristic Maps. Proc. Intern. Conf. on Manifolds and Related topics in Topology. Tokyo (1973). Zbl0321.32010MR372244
- 9 Scherk, J. and Steenbrink, J.H.M.: On the Mixed Hodge Structure on the Cohomology of the Milnor Fibre. Math. Ann.271 (1985) 641-665. Zbl0618.14002MR790119
- 10 Schrauwen, R. and Steenbrink, J. and Stevens, J.: Spectral Pairs and the Topology of Curve Singularities. Proc. of Symposia in Pure Math.53 (1991) 305-327. Zbl0749.14003MR1141207
- 11 Steenbrink, J.H.M.: Mixed Hodge Structures on the Vanishing Cohomology. Nordic Summer School/NAVF, Symposium in Math. Oslo (1976). Zbl0373.14007MR485870
- 12 Steenbrink, J.H.M.: Intersection form for quasi-homogeneous singularities. Comp. Math.34 (1977) 211-233. Zbl0347.14001MR453735
- 13 Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities. Proc. of Symp. in Pure Math.40 Part 2 (1983). Zbl0515.14003MR713277
Citations in EuDML Documents
top- Muhammad Banyamin, Gerhard Pfister, Stefan Steidel, About the computation of the signature of surface singularities z N + g(x, y) = 0
- Maciej Borodzik, András Némethi, Hodge–type structures as link invariants
- András Némethi, Variation structures: results and open problems
- R. García López, A. Némethi, Hodge numbers attached to a polynomial map
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.