The real Seifert form and the spectral pairs of isolated hypersurface singularities

András Némethi

Compositio Mathematica (1995)

  • Volume: 98, Issue: 1, page 23-41
  • ISSN: 0010-437X

How to cite

top

Némethi, András. "The real Seifert form and the spectral pairs of isolated hypersurface singularities." Compositio Mathematica 98.1 (1995): 23-41. <http://eudml.org/doc/90393>.

@article{Némethi1995,
author = {Némethi, András},
journal = {Compositio Mathematica},
keywords = {hypersurface singularity; spectral pairs; Hodge numbers; Milnor fiber; real Seifert form; canonical pairing; hermitian variation structures},
language = {eng},
number = {1},
pages = {23-41},
publisher = {Kluwer Academic Publishers},
title = {The real Seifert form and the spectral pairs of isolated hypersurface singularities},
url = {http://eudml.org/doc/90393},
volume = {98},
year = {1995},
}

TY - JOUR
AU - Némethi, András
TI - The real Seifert form and the spectral pairs of isolated hypersurface singularities
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 1
SP - 23
EP - 41
LA - eng
KW - hypersurface singularity; spectral pairs; Hodge numbers; Milnor fiber; real Seifert form; canonical pairing; hermitian variation structures
UR - http://eudml.org/doc/90393
ER -

References

top
  1. 1 Arnold, V.I., Gusein-Zade, S.M. and Varchenko, A.N.: Singularities of Differentiable Mappings, Vol. 2, Birkhauser, Boston, 1988. Zbl1297.32001MR966191
  2. 2 Demazure, M.: Classification des germes a point critique isolé et a nombres de modules 0 ou 1 (d'apres Arnold). Sém. Bourbaki26e année 1973/ 74,443 (1974). Zbl0359.57012
  3. 3 Durfee, A. and Kaufman, L.: Periodicity of branched cyclic covers. Math. Ann.218 (1975) 157-174. Zbl0296.55001MR385872
  4. 4 Milnor, J.: On Isometries of Inner Product Spaces. Inventiones Math.8 (1969) 83-97. Zbl0177.05204MR249519
  5. 5 Némethi, A.: The equivariant signature of hypersurface singularities, will appear in Topology. Zbl0821.32030
  6. 6 Némethi, A.: The semi-ring structure and the spectral pairs of sesqui-linear forms, Algebra Colloq.1:1 (1994) 85-95. Zbl0814.11022MR1262666
  7. 7 Neumann, W.D.: Invariants of plane curve singularities. Monographie N° 31 de L'Enseignement Math. (1983). Zbl0586.14023MR728588
  8. 8 Sakamoto, K.: Milnor fiberings and their Characteristic Maps. Proc. Intern. Conf. on Manifolds and Related topics in Topology. Tokyo (1973). Zbl0321.32010MR372244
  9. 9 Scherk, J. and Steenbrink, J.H.M.: On the Mixed Hodge Structure on the Cohomology of the Milnor Fibre. Math. Ann.271 (1985) 641-665. Zbl0618.14002MR790119
  10. 10 Schrauwen, R. and Steenbrink, J. and Stevens, J.: Spectral Pairs and the Topology of Curve Singularities. Proc. of Symposia in Pure Math.53 (1991) 305-327. Zbl0749.14003MR1141207
  11. 11 Steenbrink, J.H.M.: Mixed Hodge Structures on the Vanishing Cohomology. Nordic Summer School/NAVF, Symposium in Math. Oslo (1976). Zbl0373.14007MR485870
  12. 12 Steenbrink, J.H.M.: Intersection form for quasi-homogeneous singularities. Comp. Math.34 (1977) 211-233. Zbl0347.14001MR453735
  13. 13 Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities. Proc. of Symp. in Pure Math.40 Part 2 (1983). Zbl0515.14003MR713277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.