Complex local systems and morphisms of varieties

Brendon Lasell

Compositio Mathematica (1995)

  • Volume: 98, Issue: 2, page 141-166
  • ISSN: 0010-437X

How to cite


Lasell, Brendon. "Complex local systems and morphisms of varieties." Compositio Mathematica 98.2 (1995): 141-166. <>.

author = {Lasell, Brendon},
journal = {Compositio Mathematica},
keywords = {complex local systems; fundamental group; mixed Hodge structure},
language = {eng},
number = {2},
pages = {141-166},
publisher = {Kluwer Academic Publishers},
title = {Complex local systems and morphisms of varieties},
url = {},
volume = {98},
year = {1995},

AU - Lasell, Brendon
TI - Complex local systems and morphisms of varieties
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 2
SP - 141
EP - 166
LA - eng
KW - complex local systems; fundamental group; mixed Hodge structure
UR -
ER -


  1. 1 Brown, K.S.: Cohomology of Groups, Springer-Verlag, New York (1982). Zbl0584.20036MR672956
  2. 2 Corlette, K.: Flat G-bundles with canonical metrics. J. Diff. Geom.28 (1988) 361-382. Zbl0676.58007MR965220
  3. 3 Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S.40 (1971) 5-58.III, Publ. Math. I.H.E.S.44 (1974) 5-77. Zbl0237.14003MR498551
  4. 4 Fulton, W. and Lazarsfeld, R.: Connectivity and its applications in algebraic geometry. Proc. Midwest Algebraic Geom. Conf. 1980Lecture Notes in Math.86226-92, Springer-Verlag, Berlin (1981). Zbl0484.14005MR644817
  5. 5 Griffiths, P.: Periods of integrals on algebraic manifolds I, Amer. J. Math.90 (1968) 568-626.II, Amer. J. Math.90 (1968) 805-865.III, Publ. Math. I.H.E.S. (1970) 228-296. Zbl0214.19802
  6. 6 Griffiths, P. and Schmid, W.: Locally homogeneous complex manifolds. Acta. Math.123 (1969) 253-302. Zbl0209.25701MR259958
  7. 7 Grothendieck, A.: Representations lineaires et compactification profinie des groupes discrets. Manuscripta Math.2 (1970) 375-396. Zbl0239.20065MR262386
  8. 8 Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II. Ann. of Math.79 (1964) 109-326. Zbl0122.38603MR199184
  9. 9 Lasell, B.: Complex local systems and morphisms of varieties. Dissertation, University of Chicago (1994). Zbl0844.14007
  10. 10 Lubotzky, A. and Magid, A.: Varieties of representations of finitely generated groups. Memoirs of the AMS. Vol. 58, no. 336 (1985). Zbl0598.14042MR818915
  11. 11 Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Springer-Verlag, Berlin (1991). Zbl0732.22008MR1090825
  12. 12 Mumford, D.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete34, Springer-Verlag, Berlin (1965). Zbl0147.39304MR214602
  13. 13 Nori, M.V.: Zariski's conjecture and related problems. Ann. Scient. Ec. Norm. Sup.4 ser. 16 (1983) 305-344. Zbl0527.14016MR732347
  14. 14 Saint-Donat, B.(following notes of P. Deligne): Techniques de descente cohomologique. Seminaire de Géométrie Algébrique du Bois-Mariet Vbis. Lecture Notes in Math.27083-162. Springer-Verlag, Berlin (1972). Zbl0317.14007
  15. 15 Simpson, C.T.: Higgs bundles and local systems. Penultimate version. Preprint, Princeton University. MR1179076
  16. 16 Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. Version 3. Preprint, Princeton University. Zbl0891.14006
  17. 17 Splitthoff, S.: Finite presentability of Steinberg groups and related Chevalley groups. Dissertation, Bielefeld (1985). MR862658
  18. 18 Weil, A.: On discrete subgroups of Lie groups I, Ann. of Math.72 (1960) 369-384.II, Ann. of Math.75 (1962) 578-602. Zbl0131.26602MR137792
  19. 19 Weil, A.: On the cohomology of groups. Ann. of Math.80 (1964) 149-157. Zbl0192.12802MR169956
  20. 20 Zucker, S.: Hodge theory with degenerating coefficients: L2 cohomology in the Poincaré metric. Ann. of Math.109 (1979) 415-476. Zbl0446.14002MR534758

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.