Complex local systems and morphisms of varieties
Compositio Mathematica (1995)
- Volume: 98, Issue: 2, page 141-166
- ISSN: 0010-437X
Access Full Article
topHow to cite
topLasell, Brendon. "Complex local systems and morphisms of varieties." Compositio Mathematica 98.2 (1995): 141-166. <http://eudml.org/doc/90398>.
@article{Lasell1995,
author = {Lasell, Brendon},
journal = {Compositio Mathematica},
keywords = {complex local systems; fundamental group; mixed Hodge structure},
language = {eng},
number = {2},
pages = {141-166},
publisher = {Kluwer Academic Publishers},
title = {Complex local systems and morphisms of varieties},
url = {http://eudml.org/doc/90398},
volume = {98},
year = {1995},
}
TY - JOUR
AU - Lasell, Brendon
TI - Complex local systems and morphisms of varieties
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 2
SP - 141
EP - 166
LA - eng
KW - complex local systems; fundamental group; mixed Hodge structure
UR - http://eudml.org/doc/90398
ER -
References
top- 1 Brown, K.S.: Cohomology of Groups, Springer-Verlag, New York (1982). Zbl0584.20036MR672956
- 2 Corlette, K.: Flat G-bundles with canonical metrics. J. Diff. Geom.28 (1988) 361-382. Zbl0676.58007MR965220
- 3 Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S.40 (1971) 5-58.III, Publ. Math. I.H.E.S.44 (1974) 5-77. Zbl0237.14003MR498551
- 4 Fulton, W. and Lazarsfeld, R.: Connectivity and its applications in algebraic geometry. Proc. Midwest Algebraic Geom. Conf. 1980Lecture Notes in Math.86226-92, Springer-Verlag, Berlin (1981). Zbl0484.14005MR644817
- 5 Griffiths, P.: Periods of integrals on algebraic manifolds I, Amer. J. Math.90 (1968) 568-626.II, Amer. J. Math.90 (1968) 805-865.III, Publ. Math. I.H.E.S. (1970) 228-296. Zbl0214.19802
- 6 Griffiths, P. and Schmid, W.: Locally homogeneous complex manifolds. Acta. Math.123 (1969) 253-302. Zbl0209.25701MR259958
- 7 Grothendieck, A.: Representations lineaires et compactification profinie des groupes discrets. Manuscripta Math.2 (1970) 375-396. Zbl0239.20065MR262386
- 8 Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II. Ann. of Math.79 (1964) 109-326. Zbl0122.38603MR199184
- 9 Lasell, B.: Complex local systems and morphisms of varieties. Dissertation, University of Chicago (1994). Zbl0844.14007
- 10 Lubotzky, A. and Magid, A.: Varieties of representations of finitely generated groups. Memoirs of the AMS. Vol. 58, no. 336 (1985). Zbl0598.14042MR818915
- 11 Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Springer-Verlag, Berlin (1991). Zbl0732.22008MR1090825
- 12 Mumford, D.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete34, Springer-Verlag, Berlin (1965). Zbl0147.39304MR214602
- 13 Nori, M.V.: Zariski's conjecture and related problems. Ann. Scient. Ec. Norm. Sup.4 ser. 16 (1983) 305-344. Zbl0527.14016MR732347
- 14 Saint-Donat, B.(following notes of P. Deligne): Techniques de descente cohomologique. Seminaire de Géométrie Algébrique du Bois-Mariet Vbis. Lecture Notes in Math.27083-162. Springer-Verlag, Berlin (1972). Zbl0317.14007
- 15 Simpson, C.T.: Higgs bundles and local systems. Penultimate version. Preprint, Princeton University. MR1179076
- 16 Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. Version 3. Preprint, Princeton University. Zbl0891.14006
- 17 Splitthoff, S.: Finite presentability of Steinberg groups and related Chevalley groups. Dissertation, Bielefeld (1985). MR862658
- 18 Weil, A.: On discrete subgroups of Lie groups I, Ann. of Math.72 (1960) 369-384.II, Ann. of Math.75 (1962) 578-602. Zbl0131.26602MR137792
- 19 Weil, A.: On the cohomology of groups. Ann. of Math.80 (1964) 149-157. Zbl0192.12802MR169956
- 20 Zucker, S.: Hodge theory with degenerating coefficients: L2 cohomology in the Poincaré metric. Ann. of Math.109 (1979) 415-476. Zbl0446.14002MR534758
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.