Open surfaces with non-positive Euler characteristic
R. V. Gurjar; A. J. Parameswaran
Compositio Mathematica (1995)
- Volume: 99, Issue: 3, page 213-229
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [B] Beauville, A.: Surfaces algébriques complexes, Astérisque54, 1978. Zbl0394.14014MR485887
- [D] Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S.40 (1972) 5-57. Zbl0219.14007MR498551
- [F] Fujita, T.: On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo29, (1982) 503-566. Zbl0513.14018MR687591
- [I] Iitaka, S.: On logarithmic Kodaira dimension of algebraic varieties, Complex analysis and algebraic geometry, Iwanami Shoten, Cambridge Univ. Press, 1977. Zbl0351.14016MR569688
- [J-S] de Jong, A.J. and Steenbrink, J.H.M.: Proof of a conjecture of W. Veys, To appear in, Indagationes Mathematicae. Zbl0857.14019
- [Ka1] Kawamata, Y.: Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension 1, Proc. Internat. Symp. on Algebraic geometry, Kyoto1977, 207-217. Kinokuniya, 1978. Zbl0437.14018MR578860
- [Ka2] Kawamata, Y.: On the classification of noncomplete algebraic surfaces, Lecture Notes in Math.732, 215-232, Springer (1979). Zbl0407.14012MR555700
- [Ko] Kobayashi, R.: Uniformization of complex surfaces, Adv. Stud. Pure Math.18 (1990). Zbl0755.32024MR1145252
- [K] Kodaira, K.: On compact analytic surfaces, Analytic functions, Princeton Univ. Press, (1960) 121-135. Zbl0137.17401MR140519
- [M] Miyanishi, M.: Non-complete algebraic surfaces, Lecture Notes in Math., Vol 857, Springer1981. Zbl0456.14018MR635930
- [M-T] Miyanishi, M. and Tsunoda, S.: Non-complete algebraic surfaces with logarithmic Kodaira dimension — ∞ and with nonconnected boundaries at infinity, Japan. J. Math. Vol 10, No. 2, (1984) 195-242. Zbl0596.14023
- [S] Suzuki, S.: Sur les operations holomorphes du groupe additif complexe sur le éspace de deux variables complexes, Ann. Sci. École. Norm. Sup. (4), 10, (1977) 517-546. Zbl0403.32020MR590938
- [V] Veys, W.: Numerical data of resolutions of singularities and Igusa's local zeta function, Thesis, Katholieke Universiteit, Leuven, (1991).
- [Z] Zaidenberg, M.G.: Isotrivial families of curves on affine surfaces and characterizations of the affine plane, Math. USSR. Izvestiya30, (1988) 503-532. Zbl0666.14018MR903623