Open surfaces with non-positive Euler characteristic

R. V. Gurjar; A. J. Parameswaran

Compositio Mathematica (1995)

  • Volume: 99, Issue: 3, page 213-229
  • ISSN: 0010-437X

How to cite

top

Gurjar, R. V., and Parameswaran, A. J.. "Open surfaces with non-positive Euler characteristic." Compositio Mathematica 99.3 (1995): 213-229. <http://eudml.org/doc/90414>.

@article{Gurjar1995,
author = {Gurjar, R. V., Parameswaran, A. J.},
journal = {Compositio Mathematica},
keywords = {Miyaoka-Yau inequality; non-complete algebraic surface; non-positive topological Euler number},
language = {eng},
number = {3},
pages = {213-229},
publisher = {Kluwer Academic Publishers},
title = {Open surfaces with non-positive Euler characteristic},
url = {http://eudml.org/doc/90414},
volume = {99},
year = {1995},
}

TY - JOUR
AU - Gurjar, R. V.
AU - Parameswaran, A. J.
TI - Open surfaces with non-positive Euler characteristic
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 99
IS - 3
SP - 213
EP - 229
LA - eng
KW - Miyaoka-Yau inequality; non-complete algebraic surface; non-positive topological Euler number
UR - http://eudml.org/doc/90414
ER -

References

top
  1. [B] Beauville, A.: Surfaces algébriques complexes, Astérisque54, 1978. Zbl0394.14014MR485887
  2. [D] Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S.40 (1972) 5-57. Zbl0219.14007MR498551
  3. [F] Fujita, T.: On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo29, (1982) 503-566. Zbl0513.14018MR687591
  4. [I] Iitaka, S.: On logarithmic Kodaira dimension of algebraic varieties, Complex analysis and algebraic geometry, Iwanami Shoten, Cambridge Univ. Press, 1977. Zbl0351.14016MR569688
  5. [J-S] de Jong, A.J. and Steenbrink, J.H.M.: Proof of a conjecture of W. Veys, To appear in, Indagationes Mathematicae. Zbl0857.14019
  6. [Ka1] Kawamata, Y.: Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension 1, Proc. Internat. Symp. on Algebraic geometry, Kyoto1977, 207-217. Kinokuniya, 1978. Zbl0437.14018MR578860
  7. [Ka2] Kawamata, Y.: On the classification of noncomplete algebraic surfaces, Lecture Notes in Math.732, 215-232, Springer (1979). Zbl0407.14012MR555700
  8. [Ko] Kobayashi, R.: Uniformization of complex surfaces, Adv. Stud. Pure Math.18 (1990). Zbl0755.32024MR1145252
  9. [K] Kodaira, K.: On compact analytic surfaces, Analytic functions, Princeton Univ. Press, (1960) 121-135. Zbl0137.17401MR140519
  10. [M] Miyanishi, M.: Non-complete algebraic surfaces, Lecture Notes in Math., Vol 857, Springer1981. Zbl0456.14018MR635930
  11. [M-T] Miyanishi, M. and Tsunoda, S.: Non-complete algebraic surfaces with logarithmic Kodaira dimension — ∞ and with nonconnected boundaries at infinity, Japan. J. Math. Vol 10, No. 2, (1984) 195-242. Zbl0596.14023
  12. [S] Suzuki, S.: Sur les operations holomorphes du groupe additif complexe sur le éspace de deux variables complexes, Ann. Sci. École. Norm. Sup. (4), 10, (1977) 517-546. Zbl0403.32020MR590938
  13. [V] Veys, W.: Numerical data of resolutions of singularities and Igusa's local zeta function, Thesis, Katholieke Universiteit, Leuven, (1991). 
  14. [Z] Zaidenberg, M.G.: Isotrivial families of curves on affine surfaces and characterizations of the affine plane, Math. USSR. Izvestiya30, (1988) 503-532. Zbl0666.14018MR903623

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.