The existence of higher logarithms

Richard M. Hain

Compositio Mathematica (1996)

  • Volume: 100, Issue: 3, page 247-276
  • ISSN: 0010-437X

How to cite


Hain, Richard M.. "The existence of higher logarithms." Compositio Mathematica 100.3 (1996): 247-276. <>.

author = {Hain, Richard M.},
journal = {Compositio Mathematica},
keywords = {higher logarithms; Deligne cohomology; Chern classes; functional equation},
language = {eng},
number = {3},
pages = {247-276},
publisher = {Kluwer Academic Publishers},
title = {The existence of higher logarithms},
url = {},
volume = {100},
year = {1996},

AU - Hain, Richard M.
TI - The existence of higher logarithms
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 100
IS - 3
SP - 247
EP - 276
LA - eng
KW - higher logarithms; Deligne cohomology; Chern classes; functional equation
UR -
ER -


  1. 1 Beilinson, A.: Higher regulators and values of L-functions of curves, Func. Anal. and its Appl. 14 (1980), 116-118. Zbl0475.14015MR575206
  2. 2 Beilinson, A.: Notes on absolute Hodge cohomology in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Contemporary Math. 55, part I, Amer. Math. Soc., Providence, 1986, 35-68. Zbl0621.14011MR862628
  3. 3 Beilinson, A., MacPherson, R., and Schechtman, V.: Notes on motivic cohomology, Duke Math. J.54 (1987), 679-710. Zbl0632.14010MR899412
  4. 4 Bloch, S.: Higher regulators, Algebraic K-theory, and zeta functions of elliptic curves, unpublished manuscript, 1978. 
  5. 5 Carlson, J. and Hain, R.: Extensions of Variations of Mixed Hodge Structure, Théorie de Hodge, Luminy, Juin, 1987, Astérisque no. 179-180, 39-65. Zbl0717.14004MR1042801
  6. 6 Dupont, J.: The dilogarithm as a characteristic class for flat bundles, J. Pure and App. Alg.44 (1987), 137-164. Zbl0624.57024MR885101
  7. 7 Falk, M. and Randell, R.: The lower central series of a fiber-type arrangement, Invent. Math.82 (1985), 77-88. Zbl0574.55010MR808110
  8. 8 Gelfand, I., Goresky, M., MacPherson, R., and Serganova, V.: Geometries, convex polyhedra and Schubert cells, Advances in Math.63 (1987), 301-316. Zbl0622.57014MR877789
  9. 9 Goncharov, G.: Geometry of configurations, polylogarithms and motivic cohomology, Advances in Math.114 (1995), 197-318. Zbl0863.19004MR1348706
  10. 10 Goncharov, A.: Explicit construction of characteristic classes, Advances in Soviet Math.16 (1993), 169-210. Zbl0809.57016MR1237830
  11. 11 Hain, R.: Algebraic cycles and extensions of variations of mixed Hodge structure, Proc. Symp. Pure Math.53 (1993), 175-221. Zbl0795.14005MR1141202
  12. 12 Hain, R.: Classical polylogarithms, in Motives, Proc. Symp. Pure Math., to appear. Zbl0807.19003MR1265550
  13. 13 Hain, R. and MacPherson, R.: Higher Logarithms, Ill. J. Math.34 (1990), 392-475. Zbl0737.14014MR1046570
  14. 14 Hain, R. and Yang, J.: Real Grassmann polylogarithms and Chern classes, Math. Annalen, to appear. Zbl0882.19003
  15. 15 Hain, R. and Zucker, S.: Unipotent variations of mixed Hodge structure, Invent. Math.88 (1987), 83-124. Zbl0622.14007MR877008
  16. 16 Hanamura, M. and MacPherson, R.: Geometric construction of polylogarithms, Duke Math. J.70 (1993), to appear. Zbl0824.14043MR1224097
  17. 17 Hanamura, M. and MacPherson, R.: Geometric construction of polylogarithms, II, preprint, 1993. Zbl0824.14043MR1224097
  18. 18 Kohno, T.: Séries de Poincaré-Kozul associée aux groupes de tresse pure, Invent. Math.82 (1985), 57-75. Zbl0574.55009MR808109
  19. 19 Yang, J.: Algebraic K-groups of number fields and the Hain-MacPherson trilogarithm, Ph.D. Thesis, University of Washington, 1991. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.