A bound for the torsion in the -theory of algebraic integers.
Let be a finite abelian extension of number fields with imaginary quadratic. Let be the ring of integers of and a rational integer. We construct a submodule in the higher odd-degree algebraic -groups of using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of , which is the cardinal of the finite algebraic -group .
Let be an odd prime and a cyclic -extension of number fields. We give a lower bound for the order of the kernel and cokernel of the natural extension map between the even étale -groups of the ring of -integers of , where is a finite set of primes containing those which are -adic.
We construct a variant of Karoubi’s relative Chern character for smooth varieties over and prove a comparison result with Beilinson’s regulator with values in Deligne-Beilinson cohomology. As a corollary we obtain a new proof of Burgos’ Theorem that for number fields Borel’s regulator is twice Beilinson’s regulator.
Let K*(A;Z/ln) denote the mod-ln algebraic K-theory of a Z[1/l]-algebra A. Snaith ([14], [15], [16]) has studied Bott-periodic algebraic theory Ki(A;Z/ln)[1/βn], a localized version of K*(A;Z/ln) obtained by inverting a Bott element βn. For l an odd prime, Snaith has given a description of K*(A;Z/ln)[1/βn] using Adams maps between Moore spectra. These constructions are interesting, in particular for their connections with Lichtenbaum-Quillen conjecture [16].In this paper we obtain a description...
We present a collection of results on a conjecture of Jannsen about the p-adic realizations associated to Hecke characters over an imaginary quadratic field K of class number 1.The conjecture is easy to check for Galois groups purely of local type (Section 1). In Section 2 we define the p-adic realizations associated to Hecke characters over K. We prove the conjecture under a geometric regularity condition for the imaginary quadratic field K at p, which is related to the property that a global Galois...