On the Iwasawa theory of CM elliptic curves at supersingular primes
Compositio Mathematica (1996)
- Volume: 101, Issue: 1, page 1-19
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMcConnell, Gary. "On the Iwasawa theory of CM elliptic curves at supersingular primes." Compositio Mathematica 101.1 (1996): 1-19. <http://eudml.org/doc/90435>.
@article{McConnell1996,
author = {McConnell, Gary},
journal = {Compositio Mathematica},
keywords = {elliptic curves with complex multiplication; elliptic curves over an imaginary quadratic field; Iwasawa theory; supersingular primes; Schneider-Greenberg conjecture; -torsion subgroups; -cyclotomic extensions; maximal proextensions; special values of modular -functions; elliptic units},
language = {eng},
number = {1},
pages = {1-19},
publisher = {Kluwer Academic Publishers},
title = {On the Iwasawa theory of CM elliptic curves at supersingular primes},
url = {http://eudml.org/doc/90435},
volume = {101},
year = {1996},
}
TY - JOUR
AU - McConnell, Gary
TI - On the Iwasawa theory of CM elliptic curves at supersingular primes
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 101
IS - 1
SP - 1
EP - 19
LA - eng
KW - elliptic curves with complex multiplication; elliptic curves over an imaginary quadratic field; Iwasawa theory; supersingular primes; Schneider-Greenberg conjecture; -torsion subgroups; -cyclotomic extensions; maximal proextensions; special values of modular -functions; elliptic units
UR - http://eudml.org/doc/90435
ER -
References
top- [Bi] Billot, P.: Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière, Compos. Math.58 (1986), 341-369. Zbl0604.14017MR846910
- [Bo] Bourbaki, N.: Commutative Algebra. Hermann, Paris1972. MR360549
- [Ca] Cassels, J.W.S.: Arithmetic on curves of genus 1, IV, J. Reine und Angew. Math., 207 (1962), 234-246. Zbl0118.27701
- [CGr] Coates, J. and Greenberg, R.: Kummer theory for abelian varieties over local fields, Inv. Math.124 (1996), 129-174. Zbl0858.11032MR1369413
- [CMc] Coates, J. and McConnell, G.: On the Iwasawa theory of modular elliptic curves of analytic rank ≤ 1, to appear in Jnl. Lon. Math. Soc. Zbl0864.11053
- [CW] Coates, J. and Wiles, A.: On the Conjecture of Birch and Swinnerton-Dyer, Inv. Math.39223-251 (1977). Zbl0359.14009MR463176
- [deS] de Shalit, E.: Iwasawa theory for elliptic curves with complex multiplication, Perspectives in Mathematics3, Academic Press, Boston, 1987. Zbl0674.12004MR917944
- [Gr1] Greenberg, R.: On the structure of certain Galois groups, Invent. Math.47 (1978), 85-99. Zbl0403.12004MR504453
- [Gr2] Greenberg, R.: Non-vanishing of certain values of L-functions, in Analytic Number Theory and Diophantine Problems, proceedings of a conference at Oklahoma State University (1984), P.I.M. vol. 70, BirkhäuserBoston1987. Zbl0629.12010
- [Gr3] Greenberg, R.: Iwasawa Theory for p-adic Representations, in Advanced Studies in Pure Math. 17, Kinokuniya & Academic Press (1989), 97-137. Zbl0739.11045MR1097613
- [G] Gross, B.: Arithmetic on elliptic curves with complex multiplication, Lect. Notes Math.776, SpringerNew York (1980). Zbl0433.14032MR563921
- [Im] Imai, H.: A remark on the rational points of abelian varieties with values in cyclotomic Zl-extensions, Proc. Jap. Acad.51 (1975), 12-16. Zbl0323.14010MR371902
- [Ko] Kolyvagin, V.: Euler Systems, in The Grothendieck Festschrift, Volume II, P.I.M.87, BirkhäuserBoston1990. Zbl0742.14017MR1106906
- [Mat] Matsumura, H.: Commutative Ring Theory, C.U.P.Cambridge1989. Zbl0666.13002MR1011461
- [Mc1] McConnell, G.: On the Iwasawa theory of elliptic curves over cyclotomic fields, Ph.D. thesis, University of Cambridge1993.
- [Mc2] McConnell, G.: On a conjecture of Mazur for modular elliptic curves of analytic rank one, to appear.
- [McY] McConnell, G. and Yager, R.: Arithmetic of CM elliptic curves at supersingular primes, in preparation.
- [Mi] Milne, J.S.: Arithmetic Duality Theorems, Academic PressOrlando (1986). Zbl0613.14019MR881804
- [P-R1] Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d'lwasawa, thesis, Soc. Math. de France, Mémoire 17 (1984).
- [P-R2] Perrin-Riou, B.: Théorie d'lwasawa et hauteurs p-adiques: cas des variétés abéliennes, Séminaire de théorie des nombres de Paris90/91. Zbl0838.11072
- [P-R3] Perrin-Riou, B.: Théorie d'Iwasawa et hauteurs p-adiques, Invent. Math.109 (1992), 137-185. Zbl0781.14013MR1168369
- [Ro] Rohrlich, D.E.: On L-functions of elliptic curves and cyclotomic towers', Invent. Math.75, 409-423 (1984). Zbl0565.14006MR735333
- [Ru1] Rubin, K.: Elliptic curves with complex multiplication and the Conjecture of Birch and Swinnerton-Dyer, Invent. Math.64 (1981), 455-470. Zbl0506.14039MR632985
- [Ru2] Rubin, K.: Local units, elliptic units, Heegner points and elliptic curves, Invent. Math.88 (1987), 405-422. Zbl0623.14006MR880958
- [Ru3] Rubin, K.: On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math.93 (1988) 701-713. Zbl0673.12004MR952288
- [Ru4] Rubin, K.The 'Main Conjectures' of Iwasawa theory for imaginary quadratic fields, Invent. Math.103 (1991), 25-68. Zbl0737.11030MR1079839
- [Sc] Schneider, P.: p-adic height pairings II, Inv. Math.79, 329-374 (1985). Zbl0571.14021MR778132
- [Se1] Serre, J.-P.: Algèbre Locale - Multiplicités, Springer-Verlag (2nd edition) 1965. Zbl0142.28603MR201468
- [Se2] Serre, J.-P.Serre, Local Fields, Springer-Verlag, New York1979. Zbl0423.12016MR554237
- [SeTa] Serre, J.-P. and Tate, J.: Good Reduction of Abelian Varieties, Ann. of Math.88 (1968), 492-517. Zbl0172.46101MR236190
- [Si] Silverman, J.H.: The Arithmetic of Elliptic Curves, Springer-Verlag, New York1988. Zbl0585.14026MR817210
- [Ta] Tate, J.: Relations between K2 and Galois Cohomology, Invent. Math.36, 257-274 (1976). Zbl0359.12011MR429837
- [Wing] Wingberg, K.: Duality Theorems for Abelian Varieties over Zp-extensions, Advanced Studies in Pure Math.17, 471-492 (1989). Zbl0746.14011MR1097629
- [Wint] Wintenberger, J.-P.: Structure Galoisienne de limites projectives d'unités locales, Compos. Math.421 (1981) 89-103. Zbl0414.12008MR594484
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.