Complementary 2-forms of Poisson structures

Izu Vaisman

Compositio Mathematica (1996)

  • Volume: 101, Issue: 1, page 55-75
  • ISSN: 0010-437X

How to cite

top

Vaisman, Izu. "Complementary 2-forms of Poisson structures." Compositio Mathematica 101.1 (1996): 55-75. <http://eudml.org/doc/90437>.

@article{Vaisman1996,
author = {Vaisman, Izu},
journal = {Compositio Mathematica},
keywords = {Hamiltonian structure; Poisson manifold; Lie algebroid; Poisson-Nijenhuis structure},
language = {eng},
number = {1},
pages = {55-75},
publisher = {Kluwer Academic Publishers},
title = {Complementary 2-forms of Poisson structures},
url = {http://eudml.org/doc/90437},
volume = {101},
year = {1996},
}

TY - JOUR
AU - Vaisman, Izu
TI - Complementary 2-forms of Poisson structures
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 101
IS - 1
SP - 55
EP - 75
LA - eng
KW - Hamiltonian structure; Poisson manifold; Lie algebroid; Poisson-Nijenhuis structure
UR - http://eudml.org/doc/90437
ER -

References

top
  1. 1 Bourbaki, N.: Variétés différentiables et analytiques. Paris, Hermann, 1971. Zbl0217.20401MR281115
  2. 2 Brylinski, J. -L.: A differential complex for Poisson manifolds. J. Diff. Geometry.28 (1988) 93-114. Zbl0634.58029MR950556
  3. 3 Gel'fand, I.M. and Dorfman, I. Ya.: The Schouten bracket and Hamiltonian operators. Funkt. Anal. Prilozhen.14 (3) (1980) 71-74. Zbl0444.58010MR583806
  4. 4 Gel'fand, I.M. and Dorfman, I. Ya.: Hamiltonian operators and the classical Yang-Baxter equation. Funkt. Anal. Prilozhen.16 (4) (1982) 1-9. Zbl0527.58018MR684122
  5. 5 Helgason, S.: Differential Geometry, Lie groups and symmetric spaces. Academic Press, New York, 1978. Zbl0451.53038MR514561
  6. 6 Kosmann-Schwarzbach, Y.: The modified Yang-Baxter equation and bihamiltonian structures. Proc. XVIIth Int. Conf. on Diff. Geom. Methods in Theoretical Physics, Chester1988 (A. Solomon, ed.), World Scientific, Singapore, 1989, 12-25. MR1124411
  7. 7 Kosmann-Schwarzbach, Y. and Magri, F.: Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré, série A (Physique théorique). 53 (1990) 35-81. Zbl0707.58048MR1077465
  8. 8 Koszul, J.L.: Crochet de Schouten-Nijenhuis et cohomologie. In: É. Cartan et les mathématiques d'aujourd'hui. Soc. Math. de France, Astérisque, hors série, 1985, 257-271. Zbl0615.58029MR837203
  9. 9 Libermann, P.: Sur le problème d'équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl.36 (1954) 27-120. Zbl0056.15401MR66020
  10. 10 Lichnérowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geometry, 12 (1977) 253-300. Zbl0405.53024MR501133
  11. 11 Mackenzie, K.: Lie groupoids and Lie algebroids in differential geometry. London Math. Soc. Lecture Notes Series124, Cambridge Univ. Press, Cambridge, 1987. Zbl0683.53029MR896907
  12. 12 Magri, F. and Morosi, C.: A geometrical characterization of integrable Hamiltonian Systems through the theory of Poisson- Nijenhuis manifolds. Quaderno S. Univ. of Milan, 19 (1984). 
  13. 13 Thurston, W.P.: Some simple examples of symplectic manifolds. Proc. American Math. Soc.55 (1976) 467-468. Zbl0324.53031MR402764
  14. 14 Vaisman, I.: Cohomology and differential forms. M. Dekker, Inc., New York, 1973. Zbl0267.58001MR341344
  15. 15 Vaisman, I.: Lectures on the geometry of Poisson manifolds. Progress in Math. Series, 118, Birkhäuser, Basel, 1994. Zbl0810.53019MR1269545
  16. 16 Vaisman, I.: The Poisson-Nijenhuis manifolds revisited. Rendiconti Sem. Mat. Torino, 52 (1994). Zbl0852.58042MR1345608
  17. 17 Weil, A.: Introduction à l'étude des variétés Kähleriennes. Hermann, Paris, 1971. Zbl0137.41103
  18. 18 Weinstein, A.: The local structure of Poisson manifolds. J. Diff. Geometry.18 (1983) 523-557. Zbl0524.58011MR723816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.