The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids

Jan Kubarski

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 2, page 359-376
  • ISSN: 0011-4642

Abstract

top
This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either or s l ( 2 , ) or so ( 3 ) are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to n + 1 , where n is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For -Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of M , we get the Euler class of this Lie algebroid. Some integral formulae for indices are given.

How to cite

top

Kubarski, Jan. "The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids." Czechoslovak Mathematical Journal 56.2 (2006): 359-376. <http://eudml.org/doc/31034>.

@article{Kubarski2006,
abstract = {This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either $\mathbb \{R\}$ or $\mathop \{\mathrm \{s\}l\}(2,\mathbb \{R\})$ or $\operatorname\{so\} (3)$ are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to $n+1$, where $n$ is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For $\mathbb \{R\}$-Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of $M$, we get the Euler class of this Lie algebroid. Some integral formulae for indices are given.},
author = {Kubarski, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lie algebroid; Euler class; index theorem; integration over the fibre; flat connection with singularitity; Euler class; index theorem; integration over the fibre; flat connection with singularitity},
language = {eng},
number = {2},
pages = {359-376},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids},
url = {http://eudml.org/doc/31034},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kubarski, Jan
TI - The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 359
EP - 376
AB - This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either $\mathbb {R}$ or $\mathop {\mathrm {s}l}(2,\mathbb {R})$ or $\operatorname{so} (3)$ are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to $n+1$, where $n$ is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For $\mathbb {R}$-Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of $M$, we get the Euler class of this Lie algebroid. Some integral formulae for indices are given.
LA - eng
KW - Lie algebroid; Euler class; index theorem; integration over the fibre; flat connection with singularitity; Euler class; index theorem; integration over the fibre; flat connection with singularitity
UR - http://eudml.org/doc/31034
ER -

References

top
  1. 10.1090/S0002-9947-1957-0086359-5, Trans. Amer. Math. Soc. 85 (1957), 181–207. (1957) Zbl0078.16002MR0086359DOI10.1090/S0002-9947-1957-0086359-5
  2. Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid, In: Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Volume  54, Institute of Mathematics, Polish Academy of Science, Warszawa, 2001, pp. 135–173. (2001) MR1881644
  3. Groupoides Symplectiques, Publ. Dep. Math. Université de Lyon  1,  2/A, 1987. (1987) MR0996653
  4. Varietes de Poisson—Algebroides de Lie, Publ. Dep. Math. Université de Lyon 1, 1/B, 1988. (1988) MR1040867
  5. Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J.  Math. (1999), 17–434. (1999) MR1726784
  6. Lie algebroids and Poisson-Nijenhuis structures, Reports on Mathematics Physics, Vol.  40 (1997). Zbl1005.53061MR1614690
  7. 10.1016/S0393-0440(99)00007-8, J.  Geom. Phys. 31 (1999), 111–141. (1999) MR1706624DOI10.1016/S0393-0440(99)00007-8
  8. Connections, Curvature, and Cohomology. Pure and Aplied Mathematics 47, 47-II, 47-III, Academic Press, New York-London, 1971, 1973, 1976. (1971, 1973, 1976) MR0400275
  9. Pseudo-algèbres de Lie I, II, C.  R. Acad. Sci. Paris 263 (1953), 1935–1937, 2289–2291. (1953) Zbl0050.03201
  10. 10.1007/BF00996111, Acta Applicandae Mathematicae 41 (1995), 153–165. (1995) Zbl0837.17014MR1362125DOI10.1007/BF00996111
  11. 10.1007/BF01815524, Letters Mathematical Physics 38 (1996), 421–428. (1996) Zbl1005.53060MR1421686DOI10.1007/BF01815524
  12. Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York-London, 1963. (1963) MR0152974
  13. Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism, Preprint Nr  2, Institute of Mathematics, Technical University of Łódź, August 1986. MR0946719
  14. Lie Algebroid of a Principal Fibre Bundle, Publ. Dep. Math. University de Lyon 1, 1/A, 1989. (1989) MR1129261
  15. The Chern-Weil homomorphism of regular Lie algebroids, Publ. Dep. Math. University de Lyon  1, 1991. 
  16. A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup, Rev. Math. Complut. 4 (1991), 159–176. (1991) Zbl0766.17004MR1145691
  17. Invariant cohomology of regular Lie algebroids, Proceedings of the VIIth  International Colloquium on Differential Geometry, Spain, July 26–30, 1994, World Scientific, Singapure, 1995, pp. 137–151. (1995) Zbl0996.22005MR1414200
  18. Bott’s Vanishing Theorem for Regular Lie Algebroids, Transaction of the A.M.S. Vol.  348, June  1996. Zbl0858.22009MR1357399
  19. Fibre integral in regular Lie algebroids, In: New Developments in Differential Geometry, Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27–30, 1996, Kluwer Academic Publishers, , 1999, pp. 173–202. (1999) Zbl0959.58026MR1670494
  20. Connections in regular Poisson manifolds over -Lie foliations, In: Banach Center Publications, Vol.  51 “Poisson geometry”, , Warszawa, 2000, pp. 141–149. (2000) MR1764441
  21. Gysin sequence and Euler class of spherical Lie algebroids, In: Publicationes Mathematicae Debrecen, Tomus  59 vol. 3–4, 2001, pp. 245–269. (2001) Zbl0999.22003MR1874430
  22. Weil algebra and secondary characteristic homomorphism of regular Lie algebroids, In: Lie algebroids and related topics in differential geometry, Banach Center Publications, Vol. 51, Inst. of Math. Polish Academy of Sciences, Warszawa, 2001, pp. 135–173. (2001) MR1881653
  23. Poincaré duality for transitive unimodular invariantly oriented Lie algebroids, In: Topology and Its Applications, Vol.  121, , , 2002, pp. 333–355. (2002) Zbl1048.58014MR1908998
  24. The Euler-Poincaré-Hopf theorem for some regular -Lie algebroids, In: Proceedings of the Ist Colloquium on Lie Theory and Applications, Universidad de Vigo, 2002, pp. 105–112. (2002) MR1954765
  25. An introduction to Lie groupoids, Duplicated notes, Núcleo de Estudos e Pesquiese Cientificas, Rio de Janeiro, 1971. (The greater part of these Notes appear as the Appendix of [26]), , , , pp. . 
  26. Lie equations, Vol.  I: General theory, Annals of Math. Studies, No. 73, Princeton University Press, Princeton, 1972. (1972) MR0380908
  27. 10.24033/bsmf.1536, Bull. Soc. Math. France 87 (1959), 409–425. (1959) Zbl0198.26801MR0123279DOI10.24033/bsmf.1536
  28. Sur les prolongements des fibrés principaux et groupoides différentiables banachiques, In: Seminaire de mathématiques superieures—élé 1969, Analyse Globale, Les presses de l’Université de Montréal, Montréal, 1971, pp. 7–108. (1971) MR0356117
  29. Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge University Press, Cambridge, 1987. (1987) Zbl0683.53029MR0896907
  30. 10.1112/blms/27.2.97, Bull. London Math. Soc. 27 (1995), 97–147. (1995) Zbl0829.22001MR1325261DOI10.1112/blms/27.2.97
  31. 10.24033/asens.1328, Ann. Sci. Ecole Norm. Sup. 10 (1977), 289–307. (1977) Zbl0368.57007MR0458446DOI10.24033/asens.1328
  32. Riemannian Foliations. Progress in Mathematics, Vol. 73, Birkhäuser-Verlag, Boston-Basel, 1988. (1988) MR0932463
  33. Cohomology of Lie algebroids, An. Sti. Univ. “Al. I. Cuza” Iasi. Sect.  I a Mat.  XXII f2 (1976), 197–199. (1976) Zbl0361.18013MR0438358
  34. Du prolongement des espaces fibrés et des structures infinitésimales, (1967), Ann. Inst. Fourier, Grenoble, 157–223. (1967) 
  35. 10.4310/jdg/1214501135, J.  of. Diff. Geom. 2 (1968), 33–40. (1968) Zbl0164.22604MR0235587DOI10.4310/jdg/1214501135
  36. Théorie de Lie pour les groupoides differentiables, In: Atti del Convegno Internazionale di Geometria Differenziale, Bologna, September 28–30, 1967, , , 1970, pp. 233–236. (1970) Zbl0232.22028
  37. Complementary 2-forms of Poisson Structures, Compositio Mathematica 101 (1996), 55–75. (1996) Zbl0853.58056MR1390832
  38. 10.4064/ap-73-3-275-290, Annales Polonici Mathematici 73 (2000), 275–290 (arXiv:math.DG/9904112). (2000) MR1785692DOI10.4064/ap-73-3-275-290

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.