Dimensions of Demazure modules for rank two affine Lie algebras
Compositio Mathematica (1996)
- Volume: 101, Issue: 2, page 115-131
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [D] Demazure, M.: Une nouvelle formule des caractères, Bull. Soc. Math. France, 2e série 98, (1974), 163-172. Zbl0365.17005MR430001
- [Ka] Kac, V.: Infinite-dimensional Lie-algebras, Cambridge University Press, Cambridge, 1985. Zbl0574.17010MR823672
- [Ku] Kumar, S.: Demazure character formula in arbitrary Kac-Moody setting. Invent. Math.89 (1987), 395-423. Zbl0635.14023MR894387
- [LS] Lakshmibai, V. and Seshadri, C.S.: Standard monomial theory for SL2, Infinite-dimensional Lie algebras and groups (Luminy- Marseille1988), World Sci. Publishing, Teaneck, NJ,1989, pp. 178-234. Zbl0759.22022MR1026953
- [LW] Lepowsky, J. and Wilson, R.L.: The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent. Math.77 (1984), 199-290. Zbl0577.17009MR752821
- [L1] Littelmann, P.: A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math.116 (1994), 329-346. Zbl0805.17019MR1253196
- [L2] Littelmann, P.: Paths and root operators in representation theory. Ann. Math., to appear. Zbl0858.17023MR1356780
- [M] Mathieu, O.: Formule de Demazure-Weyl et généralisation du théorème de Borel-Weil-Bott, C.R. Acad. Sc. Paris, Série I, 303 no. 9, (1986), 391-394. Zbl0602.17008MR862200