Separation, factorization and finite sheaves on Nash manifolds

Michel Coste; Jesús M. Ruiz; Masahiro Shiota

Compositio Mathematica (1996)

  • Volume: 103, Issue: 1, page 31-62
  • ISSN: 0010-437X

How to cite

top

Coste, Michel, Ruiz, Jesús M., and Shiota, Masahiro. "Separation, factorization and finite sheaves on Nash manifolds." Compositio Mathematica 103.1 (1996): 31-62. <http://eudml.org/doc/90460>.

@article{Coste1996,
author = {Coste, Michel, Ruiz, Jesús M., Shiota, Masahiro},
journal = {Compositio Mathematica},
keywords = {Nash functions; Nash manifolds},
language = {eng},
number = {1},
pages = {31-62},
publisher = {Kluwer Academic Publishers},
title = {Separation, factorization and finite sheaves on Nash manifolds},
url = {http://eudml.org/doc/90460},
volume = {103},
year = {1996},
}

TY - JOUR
AU - Coste, Michel
AU - Ruiz, Jesús M.
AU - Shiota, Masahiro
TI - Separation, factorization and finite sheaves on Nash manifolds
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 103
IS - 1
SP - 31
EP - 62
LA - eng
KW - Nash functions; Nash manifolds
UR - http://eudml.org/doc/90460
ER -

References

top
  1. [An] D'Angelo, J.: Orders of contact of real and complex subvarieties, Illinois J. Math.26 (1982) 41-51. Zbl0459.32006MR638553
  2. [Ar] Artin, M.: Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S.36 (1969) 23-58. Zbl0181.48802MR268188
  3. [BeTo] Benedetti, R. and Tognoli, A.: On real algebraic vector bundles, Bull. Sc. Math.104 (1980) 89-102. Zbl0421.58001MR560747
  4. [BaTo] Beretta, L. and Tognoli, A.: Nash sets and global equations, Bolletino U.M.I. (7) 4-A (1990) 31-44. Zbl0735.14037MR1047511
  5. [BoCoRo] Bochnak, J., Coste, M. and Roy, M-F.: Géométrie algébrique réelle, Springer1987. Zbl0633.14016MR949442
  6. [CoRzSh] Coste, M., Ruiz, J.M. and Shiota, M.: Approximation in compact Nash manifolds, Amer. J. Math.117 (1995) 1-23. Zbl0873.32007MR1342835
  7. [Ef1] Efroymson, G.: Nash rings in planar domains, Trans. Amer. Math. Soc.249 (1979) 435-445. Zbl0426.14024MR525683
  8. [Ef2] Efroymson, G.: The extension theorem for Nash functions, in: Géométrie algébrique réelle et formes quadratiques, 343-357, Lecture Notes in Math.959, Springer1982. Zbl0516.14020MR683141
  9. [EkTn] El Khadiri, A. and Tougeron, J-C.: Familles noethériennes de modules sur k[[X]] et applications, to appear in Bull. Sc. Math. Zbl0858.13009MR1399844
  10. [FoLoRa] Fortuna, E., Lojasiewicz, S. and Raimondo, M.: Algebricité de germes analytiques, J. reine angew. Math.374 (1987) 208-213. Zbl0599.32004MR876225
  11. [GuRo] Gunning, R.C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall1965. Zbl0141.08601MR180696
  12. [Hd] Hubbard, J.: On the cohomology of Nash sheaves, Topology11 (1972) 265-270. Zbl0238.55010MR295380
  13. [Hr] Huber, R.: Isoalgebraische Räume, thesis, Regensburg1984. 
  14. [Kn] Knebusch, M.: Isoalgebraic geometry: first steps, in: Sém. Delange-Pisot-Poitou (1980-81) 215-220Progress in Math.22, Birkhäuser1982. Zbl0518.14016MR693315
  15. [MoRa] Mora, F. and Raimondo, M.: Sulla fattorizzazzione analitica delle funzioni di Nash, Le Matematiche37 (1982) 251-256. Zbl0631.14020MR847831
  16. [Mo] Mostowski, T.: Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa3 (1976) 245-266. Zbl0335.14001MR412180
  17. [Pe] Pecker, D.: On Efroymson's extension theorem for Nash functions, J. Pure Appl. Algebra37 (1985) 193-203. Zbl0581.14016MR796409
  18. [Qu] Quarez, R.: The idempotency of the real spectrum implies the extension theorem for Nash functions, preprint, Rennes1994. Zbl0904.14031MR1622010
  19. [RzSh] Ruiz, J.M. and Shiota, M.: On global Nash functions, Ann. scient. Éc. Norm. Sup.27 (1994) 103-124. Zbl0805.14027MR1258407
  20. [Sh1] Shiota, M.: On the unique factorization of the ring of Nash functions, Publ. RIMS Kyoto Univ.17 (1981) 363-369. Zbl0503.58001MR642648
  21. [Sh2] Shiota, M.: Nash manifolds, Lecture Notes in Math. 1269, Springer1987. Zbl0629.58002MR904479
  22. [Sh3] Shiota, M.: Extension et factorisation de fonctions de Nash C∞, C. R. Acad. Sci. Paris308 (1989) 253-256. Zbl0681.32006
  23. [Th] Thom, R.: Quelques propriétés globales des variétés différentiables, Comment. Math. Helv.28 (1954) 17-86. Zbl0057.15502MR61823
  24. [TaTo] Tancredi, A. and Tognoli, A.: On the extension of Nash functions, Math. Ann.288 (1990) 595-604. Zbl0699.32006MR1081265
  25. [To] Tognoli, A.: Algebraic geometry and Nash functions, Institutiones Math. 3, Academic Press1978. Zbl0418.14002MR556239
  26. [WhBr] Whitney, H. and Bruhat, F.: Quelques propriétés fondamentales des ensembles analytiques réels, Comment. Math. Helvet.33 (1959) 132-160. Zbl0100.08101MR102094

NotesEmbed ?

top

You must be logged in to post comments.