A local Bernstein inequality on real algebraic varieties.
We characterize composition operators on spaces of real analytic functions which are open onto their images. We give an example of a semiproper map φ such that the associated composition operator is not open onto its image.
Some representations of Nash functions on continua in ℂ as integrals of rational functions of two complex variables are presented. As a simple consequence we get close relations between Nash functions and diagonal series of rational functions.
We prove that any divisor of a global analytic set has a generic equation, that is, there is an analytic function vanishing on with multiplicity one along each irreducible component of . We also prove that there are functions with arbitrary multiplicities along . The main result states that if is pure dimensional, is locally principal, is not connected and represents the zero class in then the divisor is globally principal.
We study here several finiteness problems concerning affine Nash manifolds and Nash subsets . Three main results are: (i) A Nash function on a semialgebraic subset of has a Nash extension to an open semialgebraic neighborhood of in , (ii) A Nash set that has only normal crossings in can be covered by finitely many open semialgebraic sets equipped with Nash diffeomorphisms such that , (iii) Every affine Nash manifold with corners is a closed subset of an affine Nash manifold...
This is a survey on the history of and the solutions to the basic global problems on Nash functions, which have been only recently solved, namely: separation, extension, global equations, Artin-Mazur description and idempotency, also noetherianness. We discuss all of them in the various possible contexts, from manifolds over the reals to real spectra of arbitrary commutative rings.
Let be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider ; is a multiplicative subset of . Let be the localization of H(M) with respect to . In this paper we prove, first, that is a regular ring (hence noetherian) and use this result in two situations: 1) For each open subset , we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, , is algebraic...
We discuss some conditions which guarantee that the Kuratowski limit of a sequence of analytic sets is a Nash set.
Let be a closed real-analytic subset and putThis article deals with the question of the structure of . In the main result a natural proof is given for the fact, that always is closed. As a main tool an interesting relation between complex analytic subsets of of positive dimension and the Segre varieties of is proved and exploited.
We deal with a reduction of power series convergent in a polydisc with respect to a Gröbner basis of a polynomial ideal. The results are applied to proving that a Nash function whose graph is algebraic in a "large enough" polydisc, must be a polynomial. Moreover, we give an effective method for finding this polydisc.