Artin-Nagata properties and Cohen-Macaulay associated graded rings

Mark Johnson; Bernd Ulrich

Compositio Mathematica (1996)

  • Volume: 103, Issue: 1, page 7-29
  • ISSN: 0010-437X

How to cite


Johnson, Mark, and Ulrich, Bernd. "Artin-Nagata properties and Cohen-Macaulay associated graded rings." Compositio Mathematica 103.1 (1996): 7-29. <>.

author = {Johnson, Mark, Ulrich, Bernd},
journal = {Compositio Mathematica},
keywords = {blow-up algebras; Cohen-Macaulayness of the Rees algebra},
language = {eng},
number = {1},
pages = {7-29},
publisher = {Kluwer Academic Publishers},
title = {Artin-Nagata properties and Cohen-Macaulay associated graded rings},
url = {},
volume = {103},
year = {1996},

AU - Johnson, Mark
AU - Ulrich, Bernd
TI - Artin-Nagata properties and Cohen-Macaulay associated graded rings
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 103
IS - 1
SP - 7
EP - 29
LA - eng
KW - blow-up algebras; Cohen-Macaulayness of the Rees algebra
UR -
ER -


  1. 1 I.M. Aberbach, Local reduction numbers and Cohen-Macaulayness of associated graded rings, preprint, 1994. Zbl0918.13001MR1364345
  2. 2 I.M. Aberbach and S. Huckaba, Reduction number bounds on analytic deviation two ideals and Cohen-Macaulayness of associated graded rings, Comm. Algebra23 (1995), 2003-2026. Zbl0831.13002MR1327119
  3. 3 I.M. Aberbach, S. Huckaba and C. Huneke, Reduction numbers, Rees algebras, and Pfaffian ideals, J. Pure and Applied Algebra, to appear. Zbl0838.13003MR1350205
  4. 4 I.M. Aberbach and C. Huneke, An improved Briançon-Skoda theorem with applications to the Cohen-Macaulayness of Rees algebras, Math. Ann.297 (1993), 343-369. Zbl0788.13001MR1241812
  5. 5 I.M. Aberbach, C. Huneke and N.V. Trung, Reduction numbers, Briançon-Skoda theorems and depth of Rees algebras, preprint, 1993. Zbl0854.13003
  6. 6 M. Artin and M. Nagata, Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ.12 (1972), 307-323. Zbl0263.14019MR301006
  7. 7 L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embedding, Math. Z.175 (1980), 249-280. Zbl0461.14014MR602637
  8. 8 D. Eisenbudand S. Goto, Linear free resolutions and minimal multiplicities, J. Algebra88 (1984), 89-133. Zbl0531.13015MR741934
  9. 9 D. Eisenbud and C. Huneke, Cohen-Macaulay Rees algebras and their specializations, J. Algebra81 (1983), 202-224. Zbl0528.13024MR696134
  10. 10 S. Goto and S. Huckaba, On graded rings associated to analytic deviation one ideals, Amer. J. Math.116 (1994), 905-919. Zbl0803.13002MR1287943
  11. 11 S. Goto and Y. Nakamura, On the Gorensteinness of graded rings associated to ideals of analytic deviation one, Contemporary Mathematics159 (1994), 51-72. Zbl0816.13004MR1266179
  12. 12 S. Goto and Y. Nakamura, Cohen-Macaulay Rees algebras of ideals having analytic deviation two, Tohoku Math. J.46 (1994), 573-586. Zbl0812.13003MR1301290
  13. 13 S. Goto and Y. Nakamura, Gorenstein graded rings associated to ideals of analytic deviation two, preprint, 1993. Zbl0848.13005
  14. 14 S. Goto, Y. Nakamura, and K. Nishida, Cohen-Macaulayness in graded rings associated to ideals, preprint, 1994. Zbl0878.13003MR1266179
  15. 15 M. Herrmann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing-up, Springer Verlag, Berlin, 1988. Zbl0649.13011MR954831
  16. 16 M. Herrmann, C. Huneke and J. Ribbe, On reduction exponents of ideals with Gorenstein formrings, preprint, 1993. Zbl0842.13001
  17. 17 J. Herzog, A. Simis and W.V. Vasconcelos, Koszul homology and blowing-up rings, in Commutative Algebra, Proceedings, Trento1981 (S. Greco and G. Valla, Eds.), Lecture Notes in Pure and Applied Math.84, Marcel Dekker, New York, 1983, 79-169. Zbl0499.13002MR686942
  18. 18 J. Herzog, A. Simis and W.V. Vasconcelos, On the canonical module of the Rees algebra and the associated graded ring of an ideal, J. Algebra105 (1987), 285-302. Zbl0613.13007MR873664
  19. 19 J. Herzog, W.V. Vasconcelos and R. Villarreal, Ideals with sliding depth, Nagoya Math. J.99 (1985), 159-172. Zbl0561.13014MR805087
  20. 20 S. Huckaba and C. Huneke, Powers of ideals having small analytic deviation, American J. Math.114 (1992), 367-403. Zbl0758.13001MR1156570
  21. 21 S. Huckaba and C. Huneke, Rees algebras of ideals having small analytic deviation, Trans. Amer. Math. Soc.339 (1993), 373-402. Zbl0813.13009MR1123455
  22. 22 C. Huneke, Symbolic powers of prime ideals and special graded algebras, Comm. Algebra9 (1981), 339-366. Zbl0454.13003MR605026
  23. 23 C. Huneke, The theory of d-sequences and powers of ideals, Adv. Math.46 (1982), 249-279. Zbl0505.13004MR683201
  24. 24 C. Huneke, On the associated graded ring of an ideal, Illinois J. Math.26 (1982), 121-137. Zbl0479.13008MR638557
  25. 25 C. Huneke, Linkage and Koszul homology of ideals, American J. Math.104 (1982), 1043-1062. Zbl0505.13003MR675309
  26. 26 C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc.277 (1983), 739-763. Zbl0514.13011MR694386
  27. 27 C. Huneke, Numerical invariants of liaison classes, Invent. Math.75 (1984), 301-325. Zbl0536.13005MR732549
  28. 28 C. Huneke and B. Ulrich, Residual intersections, J. reine angew. Math.390 (1988), 1-20. Zbl0732.13004MR953673
  29. 29 B. Johnston and D. Katz, Castelnuovo regularity and graded rings associated to an ideal, Proc. Amer. Math. Soc.123 (1995), 727-734. Zbl0826.13014MR1231300
  30. 30 J. Lipman, Cohen-Macaulayness in graded algebras, Math. Research Letters1 (1994), 149-157. Zbl0844.13006MR1266753
  31. 31 D.G. Northcott and D. Rees, Reductions of ideals in local rings, Math. Proc. Camb. Phil. Soc.50 (1954), 145-158. Zbl0057.02601MR59889
  32. 32 A. Ooishi, Castelnuovo's regularity of graded rings and modules, Hiroshima Math. J.12 (1982), 627-644. Zbl0557.13007MR676563
  33. 33 A. Simis, B. Ulrich and W.V. Vasconcelos, Cohen-Macaulay Rees algebras and degrees of polynomial relations, Math. Ann.301 (1995), 421-444. Zbl0819.13003MR1324518
  34. 34 H. Srinivasan, A grade five cyclic Gorenstein module with no minimal algebra resolutions, preprint. Zbl0856.13011
  35. 35 Z. Tang, Rees rings and associated graded rings of ideals having higher analytic deviation, Comm. Algebra22 (1994), 4855-4898. Zbl0803.13003MR1285714
  36. 36 N.V. Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc.101 (1987), 229-236. Zbl0641.13016MR902533
  37. 37 N.V. Trung and S. Ikeda, When is the Rees algebra Cohen-Macaulay ?, Comm. Algebra17 (1989), 2893-2922. Zbl0696.13015MR1030601
  38. 38 B. Ulrich, Artin-Nagata properties and reductions of ideals, Contemporary Mathematics159 (1994), 373-400. Zbl0821.13008MR1266194
  39. 39 B. Ulrich and W.V. Vasconcelos, The equations of Rees algebras of ideals with linear presentation, Math. Z.214 (1993), 79-92. Zbl0789.13002MR1234599
  40. 40 P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J.72 (1978), 93-101. Zbl0362.13007MR514892
  41. 41 W.V. Vasconcelos, Hilbert functions, analytic spread and Koszul homology, Contemporary Mathematics159 (1994), 401-422. Zbl0803.13012MR1266195

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.