On certain algebraic curves related to polynomial maps

Patrick Morton

Compositio Mathematica (1996)

  • Volume: 103, Issue: 3, page 319-350
  • ISSN: 0010-437X

How to cite


Morton, Patrick. "On certain algebraic curves related to polynomial maps." Compositio Mathematica 103.3 (1996): 319-350. <http://eudml.org/doc/90474>.

author = {Morton, Patrick},
journal = {Compositio Mathematica},
keywords = {irreducibility of polynomials; algebraic dynamics; meromorphic dynamics; Galois theory; Galois group; polynomial dynamical system},
language = {eng},
number = {3},
pages = {319-350},
publisher = {Kluwer Academic Publishers},
title = {On certain algebraic curves related to polynomial maps},
url = {http://eudml.org/doc/90474},
volume = {103},
year = {1996},

AU - Morton, Patrick
TI - On certain algebraic curves related to polynomial maps
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 103
IS - 3
SP - 319
EP - 350
LA - eng
KW - irreducibility of polynomials; algebraic dynamics; meromorphic dynamics; Galois theory; Galois group; polynomial dynamical system
UR - http://eudml.org/doc/90474
ER -


  1. 1 Armstrong, M.A.: Groups and Symmetry, Springer Verlag, New York, 1988. Zbl0663.20001MR965514
  2. 2 Batra, A. and Morton, P.: Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, I, Rocky MountainJ. of Math.24 (1994), 453-481. Zbl0810.11071MR1277338
  3. 3 Bousch, T.: Sur Quelques Problèmes de Dynamique Holomorphe, These, Universite de Paris-Sud, Centre d' Orsay, 1992. 
  4. 4 Branner, B.: The Mandelbrot set, in Chaos and Fractals, R. L. Devaney and L. Keen, eds., AMS Publications, Providence, R.I., 1989, pp. 75-105. MR1010237
  5. 5 Douady, A. and Hubbard, J.H.: Etude Dynamique des Polynomes Complex, I, II, Publications Mathematiques d'Orsay, Universite de Paris-Sud, 1984. Zbl0552.30018MR762431
  6. 6 Eichler, M.: Einführung in die Theorie der algebraischen Zahlen und Funktionen, Birkhäuser Verlag, Basel, 1963. Zbl0152.19501MR168561
  7. 7 Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), 349-366. Zbl0588.14026MR718935
  8. 8 Flynn, V., Poonen, B. and Schaefer, E.: Cycles of quadratic polynomials and rational points on a genus 2 curve, submitted. Zbl0958.11024
  9. 9 Hasse, H.: Zahlentheorie, Akademie Verlag, Berlin, 1969. Zbl1038.11501MR253972
  10. 10 Lau, E. and Schleicher, D.: Internal addreses in the Mandelbrot set and irreducibility of polynomials, SUNY Stony Brook, Institute for Mathematical Sciences, Preprint #1994/19. 
  11. 11 Morton, P.: Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory49 (1994), 183-208. Zbl0810.12003MR1305089
  12. 12 Morton, P.: Arithmetic properties of periodic points of quadratic maps, II, preprint, Wellesley College, 1994. MR1665198
  13. 13 Morton, P. and Patel, P.: The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. (3) 68 (1994), 225-263. Zbl0792.11043MR1253503
  14. 14 Morton, P. and Silverman, J.: Periodic points, multiplicities and dynamical units, J. reine angew. Math.461 (1995), 81-122. Zbl0813.11059MR1324210
  15. 15 Morton, P. and Vivaldi, F.: Bifurcations and discriminants for polynomial maps, Nonlinearity8 (1995), 571-584. Zbl0827.12001MR1342504
  16. 16 Schleicher, D.: Internal addresses in the Mandelbrot set and irreducibility of polynomials, Ph.D. Dissertion, Cornell University, 1994. 
  17. 17 Silverman, J.H.: The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
  18. 18 Stichtenoth, H.: Algebraic Function Fields and Codes, Universitext Series, Springer-Verlag, Berlin, 1993. Zbl0816.14011MR1251961
  19. 19 Vivaldi, F. and Hatjispyros, S.: Galois theory of periodic orbits of polynomial maps, Nonlinearity5 (1992), 961-978. Zbl0767.11049MR1174226

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.