Arithmetic properties of periodic points of quadratic maps, II

Patrick Morton

Acta Arithmetica (1998)

  • Volume: 87, Issue: 2, page 89-102
  • ISSN: 0065-1036

How to cite

top

Patrick Morton. "Arithmetic properties of periodic points of quadratic maps, II." Acta Arithmetica 87.2 (1998): 89-102. <http://eudml.org/doc/207214>.

@article{PatrickMorton1998,
author = {Patrick Morton},
journal = {Acta Arithmetica},
language = {eng},
number = {2},
pages = {89-102},
title = {Arithmetic properties of periodic points of quadratic maps, II},
url = {http://eudml.org/doc/207214},
volume = {87},
year = {1998},
}

TY - JOUR
AU - Patrick Morton
TI - Arithmetic properties of periodic points of quadratic maps, II
JO - Acta Arithmetica
PY - 1998
VL - 87
IS - 2
SP - 89
EP - 102
LA - eng
UR - http://eudml.org/doc/207214
ER -

References

top
  1. [ba] E. Bach, Toward a theory of Pollard's rho method, Inform. and Comput. 90 (1991), 139-155. Zbl0716.11065
  2. [bo] T. Bousch, Sur quelques problèmes de dynamique holomorphe, thèse, Université de Paris-Sud, Centre d'Orsay, 1992. 
  3. [de] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1987. 
  4. [fps] V. Flynn, B. Poonen and E. Schaefer, Cycles of quadratic polynomials and rational points on a genus 2 curve, Duke Math. J. 90 (1997), 435-463. Zbl0958.11024
  5. [m1] P. Morton, Arithmetic properties of periodic points of quadratic maps, Acta Arith. 62 (1992), 343-372. Zbl0767.11016
  6. [m2] P. Morton, Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory 49 (1994), 183-208. Zbl0810.12003
  7. [m3] P. Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), 319-350. Zbl0860.11065
  8. [mp] P. Morton and P. Patel, The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. 68 (1994), 225-263. Zbl0792.11043
  9. [ms] P. Morton and J. Silverman, Periodic points, multiplicities and dynamical units, J. Reine Angew. Math. 461 (1995), 81-122. Zbl0813.11059
  10. [mv] P. Morton and F. Vivaldi, Bifurcations and discriminants for polynomial maps, Nonlinearity 8 (1995), 571-584. Zbl0827.12001
  11. [rw] P. Russo and R. Walde, Rational periodic points of the quadratic function Q c ( x ) = x ² + c , Amer. Math. Monthly 101 (1994), 318-331. Zbl0804.58036
  12. [tvw] E. Thiran, D. Verstegen and J. Weyers, p-adic dynamics, J. Statist. Phys. 54 (1989), 893-913. 
  13. [vh1] F. Vivaldi and S. Hatjispyros, Galois theory of periodic orbits of rational maps, Nonlinearity 5 (1992), 961-978. Zbl0767.11049
  14. [vh2] F. Vivaldi and S. Hatjispyros, A family of rational zeta functions for the quadratic map, Nonlinearity 8 (1995), 321-332. 
  15. [w1] L. Washington, A family of cyclic quartic fields arising from modular curves, Math. Comp. 57 (1991), 763-775. Zbl0743.11058
  16. [w2] L. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982. Zbl0484.12001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.