Weight multiplicity polynomials for affine Kac-Moody algebras of type A r

Georgia Benkart; Seok-Jin Kang; Kailash C. Misra

Compositio Mathematica (1996)

  • Volume: 104, Issue: 2, page 153-187
  • ISSN: 0010-437X

How to cite

top

Benkart, Georgia, Kang, Seok-Jin, and Misra, Kailash C.. "Weight multiplicity polynomials for affine Kac-Moody algebras of type $A_r$." Compositio Mathematica 104.2 (1996): 153-187. <http://eudml.org/doc/90485>.

@article{Benkart1996,
author = {Benkart, Georgia, Kang, Seok-Jin, Misra, Kailash C.},
journal = {Compositio Mathematica},
keywords = {weight multiplicity polynomials; affine Kac-Moody algebras; degree; dominant weights; Kostka numbers},
language = {eng},
number = {2},
pages = {153-187},
publisher = {Kluwer Academic Publishers},
title = {Weight multiplicity polynomials for affine Kac-Moody algebras of type $A_r$},
url = {http://eudml.org/doc/90485},
volume = {104},
year = {1996},
}

TY - JOUR
AU - Benkart, Georgia
AU - Kang, Seok-Jin
AU - Misra, Kailash C.
TI - Weight multiplicity polynomials for affine Kac-Moody algebras of type $A_r$
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 104
IS - 2
SP - 153
EP - 187
LA - eng
KW - weight multiplicity polynomials; affine Kac-Moody algebras; degree; dominant weights; Kostka numbers
UR - http://eudml.org/doc/90485
ER -

References

top
  1. [BBL] Benkart, G.M., Britten, D.J. and Lemire, F.W.: Stability in Modules for Classical Lie Algebras - A Constructive Approach, Memoir Amer. Math. Soc.430 (1990). Zbl0706.17003MR1010997
  2. [BKM] Benkart, G., Kang, S.-J. and Misra, K.C.: Graded Lie algebras of Kac-Moody type, Adv. in Math.97 (1993) 154-190. Zbl0854.17026MR1201842
  3. [BK] Benkart, G. and Kass, S.N.: Weight multiplicities for affine Kac-Moody algebras, Modem Trends in Lie Theory, Queen's Papers in Pure and Applied Math. 94, V. Futorny and D. Pollack eds. (1994) 1-12. Zbl0818.17027MR1281175
  4. [FH] Fulton, W. and Harris, J.: Representation Theory, A First Course, Graduate Texts in Mathematics129Springer-Verlag, New York (1991). Zbl0744.22001MR1153249
  5. [FK] Frenkel, I.B. and Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models, Invent. Math.62 (1980) 23-66. Zbl0493.17010MR595581
  6. [FL] Feingold, A.J. and Lepowsky, J.: The Weyl-Kac character formula and power series identities, Adv. Math.29 (1978) 271-309. Zbl0391.17009MR509801
  7. [GL] Garland, H. and Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formulas, Invent. Math.34 (1976) 37-76. Zbl0358.17015MR414645
  8. [H] Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics9Springer-Verlag, New York (1972). Zbl0254.17004MR499562
  9. [Kc] Kac, V.G.: Infinite Dimensional Lie Algebras, Third Ed., Cambridge University Press, Cambridge (1990). Zbl0716.17022MR1104219
  10. [Kn1] Kang, S.-J.: Kac-Moody Lie algebras, spectral sequences, and the Witt formula, Trans. Amer. Math. Soc.339 (1993) 463—495. Zbl0794.17014
  11. [Kn2] Kang, S. -J.: Root multiplicities of Kac-Moody algebras, Duke Math. J.74 (1994) 635-666. Zbl0823.17031MR1277948
  12. [KMPS] Kass, S., Moody, R.V., Patera, J. and Slansky, R.: Affine Lie Algebras, Weight Multiplicities, and Branching Rules, Vols. I and II, Los Alamos Series in Basic and Applied Sciences, Univ. of Calif. Press, Berkeley, Los Angeles, Oxford (1990). Zbl0785.17028
  13. [L] Liu, L.-S.: Kostant's formula for Kac-Moody Lie algebras, J. Algebra149 (1992) 155-178. Zbl0779.17024MR1165205
  14. [M] Macdonald, I.G.: Symmetric Functions and Hall Polynomials2nd ed., Clarendon Press, Oxford (1995). Zbl0824.05059MR1354144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.