A separation theorem for expected value and feared value discrete time control
ESAIM: Control, Optimisation and Calculus of Variations (1996)
- Volume: 1, page 191-206
- ISSN: 1292-8119
Access Full Article
topHow to cite
topBernhard, Pierre. "A separation theorem for expected value and feared value discrete time control." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 191-206. <http://eudml.org/doc/90495>.
@article{Bernhard1996,
author = {Bernhard, Pierre},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Markov decision processes; stochastic control; minimax control; max-plus algebra; dynamical games; Maslov's idempotent measure; separation theorems},
language = {eng},
pages = {191-206},
publisher = {EDP Sciences},
title = {A separation theorem for expected value and feared value discrete time control},
url = {http://eudml.org/doc/90495},
volume = {1},
year = {1996},
}
TY - JOUR
AU - Bernhard, Pierre
TI - A separation theorem for expected value and feared value discrete time control
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 191
EP - 206
LA - eng
KW - Markov decision processes; stochastic control; minimax control; max-plus algebra; dynamical games; Maslov's idempotent measure; separation theorems
UR - http://eudml.org/doc/90495
ER -
References
top- [1] M. Akian: Density of idempotent measures and large deviations, Research Report 2534, INRIA, 1995.
- [2] M. Akian, J-P. Quadrat and M. Viot: Bellman Processes, l1th International Conference on Systems Analysis and Optimization, Sophia Antipolis, France, 1994. Zbl0826.49021
- [3] F. Baccelli, G. Cohen, J-P. Quadrat, G-J. Olsder: Synchronization and Linearity, Wiley, Chichester, U.K., 1992. Zbl0824.93003MR1204266
- [4] T. Başar and P. Bernhard: H∞ Optimal Control and Related Minimax Design Problems a Game Theory Approach, second edition, Birkhauser, Boston, 1995. MR1353236
- [5] J.A. Ball and J.W. Helton: H∞-Control for Nonlinear Plants: Connections with Differential Games, 28th CDC, Tampa, Fla, 1989.
- [6] J.A. Ball, J.W. Helton and M.L. Walker: H∞-Control For Nonlinear Systems with Output Feedback, IEEE Trans. Automatic Control, AC-38, 1993, 546-559. Zbl0782.93032MR1220736
- [7] P. Bernhard: Sketch of a Theory of Nonlinear Partial Information Min-Max Control, Research Report 2020, INRIA, 1993.
- [8] P. Bernhard: A Discrete Time Min-max Certainty Equivalence Principle, Systems and Control Letters, 24, 1995, 229-234. Zbl0877.93070MR1321130
- [9] P. Bernhard: Expected Values, Feared Values and Optimal Control, in G-J. Olsder ed. : New Trends in Dynamic Games and Applications, Birkhauser, 1995. Zbl0853.93093MR1413973
- [10] P. Bernhard and G. Bellec: On the Evaluation of Worst Case Design, with an Application to the Quadratic Synthesis Technique, 3rd IFAC symposium on Sensitivity, Adaptivity and Optimality, Ischia, Italy, 1973. MR343957
- [11] P. Bernhard and A. Rapaport: Min-max Certainty Equivalence Principle and Differential Games, revised version of a paper presented at the Workshop on Robust Controller Design and Differential Games, UCSB, Santa Barbara, 1993, submitted for publication. Zbl0857.93033
- [12] G. Choquet: Theory of capacities, Annales de l'Institut Fourier, Grenoble, 5, 1955, 131-295. Zbl0064.35101MR80760
- [13] G. Didinsky, T. Başar and P. Bernhard: Structural Properties of Minimax Policies for a Class of Differential Games Arising in Nonlinear H∞-control, Systems and Control Letters, 21, 1993, 433-441. Zbl0804.90151MR1249922
- [14] P. Del Moral: Résolution particulaire des problèmes d'estimation et d'optimisation non linéaires, PhD dissertation, Université Paul Sabatier, Toulouse, 1994.
- [15] P. Del Moral: Maslov Optimization Theory, Russian Journal of Mathematical Physics, to appear.
- [16] A. Isidori: Feedbak Control of Nonlinear Systems, 1st ECC, Grenoble, 1991.
- [17] A. Isidori and A. Astolfi: Disturbance Attenuation and H∞ Control via Measurement Feedback in Nonlinear Systems, IEEE Trans. on Automatic Control, AC 37, 1992, 1283-1293. Zbl0755.93043MR1183088
- [18] M. James: On the Certainty Equivalence Principle and the Optimal Control of Partially Observed Dynamic Games, IEEE Trans. on Automatic Control, AC 39, 1994, 2321-2324. Zbl0825.49014MR1301662
- [19] M.R. James and J.S. Baras: Partially Observed Differential Games, Infinite Dimensional HJI Equations, and Nonlinear H∞ Control, to appear. Zbl0853.90133
- [20] M.R. James, J.S. Barras and R.J. Elliott: Output Feedback Risk Sensitive Control and Differential Games for Continuous Time Nonlinear Systems, 32nd CDC, San Antonio, 1993.
- [21] M.R. James, J.S. Barras and R.J. Elliott: Risk Sensitive Control and Dynamic Games for Partially Observed Discrete Time Nonlinear Systems, IEEE Trans. on Automatic Control, AC-39, 1994, 780-792. Zbl0807.93067MR1276773
- [22] V.N. Kolokolstov and V.P. Maslov: The general form of the endomorphisms in the space of continuous functions with values in a numerical cominutative semiring (with the operation ⊕ = max), Soviet Math. Dokl., 36, 1988, 55-59. Zbl0655.46020MR902683
- [23] V. Maslov: Méthodes opératorielles, Éditions MIR, Moscow, 1987. Zbl0651.47039MR1085245
- [24] V. Maslov and S.N. Samborskii: Idempotent analysis, Advances in Soviet Mathematics, 13, AMS, Providence, 1992. Zbl0772.00015MR1203781
- [25] J-P. Quadrat: Théorèmes asymptotiques en programmation dynamique, Compte Rendus de l'Académie des Sciences, 311, 1990, 745-748. Zbl0711.90082MR1081638
- [26] A. Rapaport and P. Bernhard: Un jeu de poursuite-evasion avec connaissance imparfaite des coordonnées, International Symposium on Differential Games and Applications, St Jovite, 1994.
- [27] A.J. van der Schaft: Nonlinear State Space H∞ Control Theory, ECC 1993, Gronin-gen.
- [28] M. Viot: Chaines de Markov dans ℝ min+, META2 seminar, INRIA, 1992, unpublished.
- [29] P. Whittle: Risk sensitive linear quadratic gaussian control, Advances in Applied Probability, 13, 1981, 764-777. Zbl0489.93067MR632961
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.