Smooth homogeneous asymptotically stabilizing feedback controls

Henry Hermes

ESAIM: Control, Optimisation and Calculus of Variations (1997)

  • Volume: 2, page 13-32
  • ISSN: 1292-8119

How to cite

top

Hermes, Henry. "Smooth homogeneous asymptotically stabilizing feedback controls." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 13-32. <http://eudml.org/doc/90504>.

@article{Hermes1997,
author = {Hermes, Henry},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {asymptotic stabilization; graded approximations; value functions; homogeneous cost; homogeneous feedback},
language = {eng},
pages = {13-32},
publisher = {EDP Sciences},
title = {Smooth homogeneous asymptotically stabilizing feedback controls},
url = {http://eudml.org/doc/90504},
volume = {2},
year = {1997},
}

TY - JOUR
AU - Hermes, Henry
TI - Smooth homogeneous asymptotically stabilizing feedback controls
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 13
EP - 32
LA - eng
KW - asymptotic stabilization; graded approximations; value functions; homogeneous cost; homogeneous feedback
UR - http://eudml.org/doc/90504
ER -

References

top
  1. [1] F. Ancona: Decomposition of homogeneous vector fields of degree one and representation of the flow, Annales de l'Institut Henri Poincaré, J. Nonlinear Analysis (to appear). Zbl0843.34007MR1378464
  2. [2] M. Bardi: A boundary value problem for the minimum time function, SIAM J. Control and Opt., 27, 1989, 776-785. Zbl0682.49034MR1001919
  3. [3] R. Bianchini and G. Stephani: Graded Approximations and Controllability along a trajectory, SIAM J. Control and Opt., 28, 1990, 903-924. Zbl0712.93005MR1051629
  4. [4] R.W. Brockett: Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, 27, R. Brockett, R.S. Millman, H.J. Sussmann, eds., Birkhäuser, Boston, 181-191, 1983. Zbl0528.93051MR708502
  5. [5] J.-M. Coron: A necessary condition for feedback stabilization, Systems and Control Lett., 14, 1990, 227-232. Zbl0699.93075MR1049357
  6. [6] J.-M. Coron: On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws, SIAM J. Control and Opt., 33, 1995, 804-833. Zbl0828.93054MR1327239
  7. [7] W. Dayawansa, C. Martin and G. Knowles: Asymptotic stabilization of a class of smooth two dimensional systems, SIAM J. Control and Opt., 28, 1990, 1321-1349. Zbl0731.93076MR1075206
  8. [8] W. Dayawansa and C. Martin: Asymptotic stabilization of low dimensional systems, in Systems and Control Theory, C.I. Byrnes and A. Kurzhansky, eds., Birkhäuser, Boston, 53-67, 1991. Zbl0738.93065MR1132733
  9. [9] L.C. Evans and M.R. James: The Hamilton-Jacobi-Bellman equation for time optimal control, SIAM J. Control and Opt., 27, 1989, 1477-1489. Zbl0688.49029MR1022439
  10. [10] H. Hermes: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, in Diff. Eqs., Stability and Control, S. Elaydi, ed., Lecture Notes in Pure and Applied Math., 127, Marcel Dekker Inc., 249-260, 1991. Zbl0711.93069MR1096761
  11. [11] H. Hermes: Large time local controllability via homogeneous approximation, SIAM J. Control and Opt., 34, 1996, 1291-1299. Zbl0859.93010MR1395834
  12. [12] H. Hermes: Nilpotent and high-order approximations of vector field systems, SIAM Review, 33, 1991, 238-264. Zbl0733.93062MR1108590
  13. [13] H. Hermes: Asymptotically stabilizing feedback controls and the nonlinear regulator problem, SIAM J. Control and Opt., 29, 1991, 185-196. Zbl0738.93061MR1088226
  14. [14] H. Hermes: Asymptotically stabilizing feedback controls, J. Diff. Eqs., 92, 1991, 76-89. Zbl0736.93069MR1113589
  15. [15] M. Kawski: Geometric homogeneity and stabilization, in NOLCOS'95, 1, 164-169, 1995. 
  16. [16] J.B. Pomet: Explicit design of time varying stabilizing control laws for a class of controllable systems without drift, Systems et Control Letters, 18, 1992, 147-158. Zbl0744.93084MR1149359
  17. [17] E.B. Lee and L. Markus: Foundations of Optimal Control Theory, John Wiley, N.Y., 1967. Zbl0159.13201MR220537
  18. [18] L.P. Rothschild and E.M. Stein: Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 1976, 247-320. Zbl0346.35030MR436223
  19. [19] L. Rosier: Homogeneous Liapunov function for continuous vector field, System and Control Lett., 19, 1992, 467-473. Zbl0762.34032MR1195304
  20. [20] R. Sepulchre: Contributions to nonlinear control systems analysis by means of the direct method of Liapunov, Ph.D thesis, Universite Catholique de Louvain, 1994. 
  21. [21] G. Stefani: Local properties of nonlinear control systems, in Geometric Theory of Nonlinear Control Systems, B. Jakubczyk, W. Respondek, K. Tchon, eds., Tech. Univ., Wroclaw, 219-226, 1984. Zbl0587.93033MR842003
  22. [22] H.J. Sussmann: A general theorem on local controllability, SIAM J. Control and Opt., 25, 1987, 158-194. Zbl0629.93012MR872457
  23. [23] J. Tsinias: Triangular systems: A global extension of Coron-Praly theorem on the existence of feedback-integrator stabilizers, (preprint) 1996. Zbl0882.93071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.