# Smooth homogeneous asymptotically stabilizing feedback controls

ESAIM: Control, Optimisation and Calculus of Variations (1997)

- Volume: 2, page 13-32
- ISSN: 1292-8119

## Access Full Article

top## How to cite

topHermes, Henry. "Smooth homogeneous asymptotically stabilizing feedback controls." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 13-32. <http://eudml.org/doc/90504>.

@article{Hermes1997,

author = {Hermes, Henry},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {asymptotic stabilization; graded approximations; value functions; homogeneous cost; homogeneous feedback},

language = {eng},

pages = {13-32},

publisher = {EDP Sciences},

title = {Smooth homogeneous asymptotically stabilizing feedback controls},

url = {http://eudml.org/doc/90504},

volume = {2},

year = {1997},

}

TY - JOUR

AU - Hermes, Henry

TI - Smooth homogeneous asymptotically stabilizing feedback controls

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 1997

PB - EDP Sciences

VL - 2

SP - 13

EP - 32

LA - eng

KW - asymptotic stabilization; graded approximations; value functions; homogeneous cost; homogeneous feedback

UR - http://eudml.org/doc/90504

ER -

## References

top- [1] F. Ancona: Decomposition of homogeneous vector fields of degree one and representation of the flow, Annales de l'Institut Henri Poincaré, J. Nonlinear Analysis (to appear). Zbl0843.34007MR1378464
- [2] M. Bardi: A boundary value problem for the minimum time function, SIAM J. Control and Opt., 27, 1989, 776-785. Zbl0682.49034MR1001919
- [3] R. Bianchini and G. Stephani: Graded Approximations and Controllability along a trajectory, SIAM J. Control and Opt., 28, 1990, 903-924. Zbl0712.93005MR1051629
- [4] R.W. Brockett: Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, 27, R. Brockett, R.S. Millman, H.J. Sussmann, eds., Birkhäuser, Boston, 181-191, 1983. Zbl0528.93051MR708502
- [5] J.-M. Coron: A necessary condition for feedback stabilization, Systems and Control Lett., 14, 1990, 227-232. Zbl0699.93075MR1049357
- [6] J.-M. Coron: On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws, SIAM J. Control and Opt., 33, 1995, 804-833. Zbl0828.93054MR1327239
- [7] W. Dayawansa, C. Martin and G. Knowles: Asymptotic stabilization of a class of smooth two dimensional systems, SIAM J. Control and Opt., 28, 1990, 1321-1349. Zbl0731.93076MR1075206
- [8] W. Dayawansa and C. Martin: Asymptotic stabilization of low dimensional systems, in Systems and Control Theory, C.I. Byrnes and A. Kurzhansky, eds., Birkhäuser, Boston, 53-67, 1991. Zbl0738.93065MR1132733
- [9] L.C. Evans and M.R. James: The Hamilton-Jacobi-Bellman equation for time optimal control, SIAM J. Control and Opt., 27, 1989, 1477-1489. Zbl0688.49029MR1022439
- [10] H. Hermes: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, in Diff. Eqs., Stability and Control, S. Elaydi, ed., Lecture Notes in Pure and Applied Math., 127, Marcel Dekker Inc., 249-260, 1991. Zbl0711.93069MR1096761
- [11] H. Hermes: Large time local controllability via homogeneous approximation, SIAM J. Control and Opt., 34, 1996, 1291-1299. Zbl0859.93010MR1395834
- [12] H. Hermes: Nilpotent and high-order approximations of vector field systems, SIAM Review, 33, 1991, 238-264. Zbl0733.93062MR1108590
- [13] H. Hermes: Asymptotically stabilizing feedback controls and the nonlinear regulator problem, SIAM J. Control and Opt., 29, 1991, 185-196. Zbl0738.93061MR1088226
- [14] H. Hermes: Asymptotically stabilizing feedback controls, J. Diff. Eqs., 92, 1991, 76-89. Zbl0736.93069MR1113589
- [15] M. Kawski: Geometric homogeneity and stabilization, in NOLCOS'95, 1, 164-169, 1995.
- [16] J.B. Pomet: Explicit design of time varying stabilizing control laws for a class of controllable systems without drift, Systems et Control Letters, 18, 1992, 147-158. Zbl0744.93084MR1149359
- [17] E.B. Lee and L. Markus: Foundations of Optimal Control Theory, John Wiley, N.Y., 1967. Zbl0159.13201MR220537
- [18] L.P. Rothschild and E.M. Stein: Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 1976, 247-320. Zbl0346.35030MR436223
- [19] L. Rosier: Homogeneous Liapunov function for continuous vector field, System and Control Lett., 19, 1992, 467-473. Zbl0762.34032MR1195304
- [20] R. Sepulchre: Contributions to nonlinear control systems analysis by means of the direct method of Liapunov, Ph.D thesis, Universite Catholique de Louvain, 1994.
- [21] G. Stefani: Local properties of nonlinear control systems, in Geometric Theory of Nonlinear Control Systems, B. Jakubczyk, W. Respondek, K. Tchon, eds., Tech. Univ., Wroclaw, 219-226, 1984. Zbl0587.93033MR842003
- [22] H.J. Sussmann: A general theorem on local controllability, SIAM J. Control and Opt., 25, 1987, 158-194. Zbl0629.93012MR872457
- [23] J. Tsinias: Triangular systems: A global extension of Coron-Praly theorem on the existence of feedback-integrator stabilizers, (preprint) 1996. Zbl0882.93071

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.