Decomposition of homogeneous vector fields of degree one and representation of the flow

Fabio Ancona

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 2, page 135-169
  • ISSN: 0294-1449

How to cite

top

Ancona, Fabio. "Decomposition of homogeneous vector fields of degree one and representation of the flow." Annales de l'I.H.P. Analyse non linéaire 13.2 (1996): 135-169. <http://eudml.org/doc/78378>.

@article{Ancona1996,
author = {Ancona, Fabio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {real analytic diffeomorphisms; homogeneous vector fields; Lie group; Lie algebra; affine control systems},
language = {eng},
number = {2},
pages = {135-169},
publisher = {Gauthier-Villars},
title = {Decomposition of homogeneous vector fields of degree one and representation of the flow},
url = {http://eudml.org/doc/78378},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Ancona, Fabio
TI - Decomposition of homogeneous vector fields of degree one and representation of the flow
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 2
SP - 135
EP - 169
LA - eng
KW - real analytic diffeomorphisms; homogeneous vector fields; Lie group; Lie algebra; affine control systems
UR - http://eudml.org/doc/78378
ER -

References

top
  1. [1] A.A. Agrachev, R.V. Gamkrelidze and A.V. Sarychev, Local invariants of smooth control systems, Acta Applicandae Mathematicae, Vol. 14, 1989, pp. 191-237. Zbl0681.49018MR995286
  2. [2] F. Ancona, Homogeneous normal forms for vector fields with respect to an arbitrary dilation, Ph. D. Dissertation, University of Colorado, Boulder, December 1993. 
  3. [3] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1982. Zbl0507.34003
  4. [4] R.M. Bianchini and G. Stefani, Graded approximations and controllability along a trajectory, SIAM J. Control Optim., Vol. 28, 1990, pp. 903-924. Zbl0712.93005MR1051629
  5. [5] A. Bressan, Local asymptotic approximations of nonlinear control systems, Internat. J. Control., Vol. 41, 1985, pp. 1331-1336. Zbl0565.93031MR792946
  6. [6] K.T. Chen, Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., Vol. 85, 1963, pp. 693-722. Zbl0119.07505MR160010
  7. [7] C. Elphick, E. Tirapegui, M.E. Brachet, P. Coullet and G. Iooss, A simple global characterization for normal forms of singular vector fields, Physica, Vol. 29D, 1987, pp. 85-127. Zbl0633.58020
  8. [8] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., Springer-Verlag, New York, Heidelberg, Berlin, 1983. Zbl0515.34001MR709768
  9. [9] H. Hermes, Nilpotent approximations of control systems and distributions, SIAM J. Control Optim., Vol. 24, 1986, pp. 731-736. Zbl0604.93031MR846379
  10. [10] H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, in: Differential Equations, Stability and Control (S. Elaydi, Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 127, pp. 249-260, Dekker, New York, 1991. Zbl0711.93069MR1096761
  11. [11] H. Hermes, Asymptotically stabilizing feedback controls and the nonlinear regulator problem, SIAM J. Control Optim., Vol. 29, 1991, pp. 185-196. Zbl0738.93061MR1088226
  12. [12] H. Hermes, Nilpotent and higher order approximations of vector field systems, SIAM Review, Vol. 33, 1991, pp. 238-264. Zbl0733.93062MR1108590
  13. [13] H. Hermes, Asymptotically stabilizing feedback controls, J. Diff. Eqns., Vol. 92, 1991, pp. 76-89. Zbl0736.93069MR1113589
  14. [14] H. Hermes, Resonance and continuous asymptotically stabilizing feedback controls, Proc. IFAC NOLCOS 95 (to appear). Zbl0711.93069MR1113589
  15. [15] J.E. Humphreys, Introduction to Lie algebras and Representation Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1972. Zbl0254.17004MR323842
  16. [16] M. Kawski, Stabilization of nonlinear systems in the plane, System Control Lett., Vol. 12, 1989, pp. 169-175. Zbl0666.93103MR985567
  17. [17] P.J. Olver, Applications of Lie groups to Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1993. Zbl0785.58003MR1240056
  18. [18] L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., Vol. 137, 1976, pp. 247-320. Zbl0346.35030MR436223
  19. [19] G. Stefani, Polynomial approximations to control systems and local controllability, Proc. 24th IEEE Conference on Decision and Control, Vol. I, 1985, pp. 33-38. 
  20. [20] H.J. Sussmann, A general theorem on local controllability, SIAM J. Control Optim., Vol. 25, 1987, pp. 158-194. Zbl0629.93012MR872457
  21. [21] A. Vanderbauwhede, Center manifolds, normal forms and elementary bifurcations, in Dynamics Reported, U. Kirchgraber and H. O. Walther Ed., Vol. 2, pp. 89-169, Teubner, Stuttgart and Wiley, Chichester, 1989. Zbl0677.58001MR1000977
  22. [22] J.C. Van Der Meer, Nonsemisimple 1 : 1 resonance at an equilibrium, Cel. Mech., Vol. 27, 1982, pp. 131-149. Zbl0485.70025MR666434
  23. [23] J.C. Van Der Meer, The Hamiltonian-Hopf Bifurcation, Lecture Notes in Math., Vol. 1160, Springer-Verlag, New York, Heidelberg, Berlin, 1985. Zbl0585.58019MR815106
  24. [24] V.S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Springer-Verlag, New York, Heidelberg, Berlin, 1984. Zbl0955.22500MR746308

NotesEmbed ?

top

You must be logged in to post comments.