Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions

Andrea Bacciotti; Francesca Ceragioli

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 361-376
  • ISSN: 1292-8119

How to cite

top

Bacciotti, Andrea, and Ceragioli, Francesca. "Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 361-376. <http://eudml.org/doc/90544>.

@article{Bacciotti1999,
author = {Bacciotti, Andrea, Ceragioli, Francesca},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {stability; stabilizability; Lyapunov functions; differential inclusions; Jurdevic-Quinn type; Clarke gradient; LaSalle principle},
language = {eng},
pages = {361-376},
publisher = {EDP Sciences},
title = {Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions},
url = {http://eudml.org/doc/90544},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Bacciotti, Andrea
AU - Ceragioli, Francesca
TI - Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 361
EP - 376
LA - eng
KW - stability; stabilizability; Lyapunov functions; differential inclusions; Jurdevic-Quinn type; Clarke gradient; LaSalle principle
UR - http://eudml.org/doc/90544
ER -

References

top
  1. [1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag ( 1984). Zbl0538.34007MR755330
  2. [2] J. Auslander and P. Seibert, Prolongations and Stability in Dynamical Systems. Ann. Inst. Fourier (Grenoble) 14 ( 1964) 237-268. Zbl0128.31303MR176180
  3. [3] A. Bacciotti, Local Stabilizability Theory of Nonlinear System, World Scientific ( 1992). Zbl0757.93061MR1148363
  4. [4] A. Bacciotti and L. Rosier, Liapunov and Lagrange Stability: Inverse Theorems for Discontinuous Systems. Mathematics of Control, Signals and Systems 11 ( 1998) 101-128. Zbl0919.34051MR1628047
  5. [5] N.P. Bhatia and G.P. Szëgo, Stability Theory of Dynamical Systems, Springer Verlag ( 1970). Zbl0213.10904MR289890
  6. [6] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley and Sons ( 1983). Zbl0582.49001MR709590
  7. [7] F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic Controllability Implies Feeedback Stabilization. IEEE Trans. Automat. Control 42 ( 1997) 1394-1407. Zbl0892.93053MR1472857
  8. [8] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski Qualitative Properties of Control Systems: A Survey. J. Dynam. Control Systems 1 ( 1995) 1-47. Zbl0951.49003MR1319056
  9. [9] J.M. Coron and L. Rosier, A Relation between Continuous Time-Varying and Discontinuous Feedback Stabilization. J. Math. Systems, Estimation and Control 4 ( 1994) 67-84. Zbl0925.93827MR1298548
  10. [10] K. DeimlingMultivalued Differential Equations, de Gruyter ( 1992). Zbl0760.34002MR1189795
  11. [11] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC ( 1992). Zbl0804.28001MR1158660
  12. [12] A.F. Filippov, Differential Equations with Discontinuous Righthandside, Kluwer Academic Publishers ( 1988). Zbl0664.34001MR1028776
  13. [13] R.A. Freeman and P.V. Kokotovic, Backstepping Design with Nonsmooth Nonlinearities, IFAC NOLCOS, Tahoe City, California ( 1995) 483-488. 
  14. [14] V. Jurdjevic and J.P. Quinn, Controllability and Stability. J. Differential Equations 28 ( 1978) 381-389. Zbl0417.93012MR494275
  15. [15] O. Hájek, Discontinuous Differential Equations. I, II. J. Differential Equations 32 ( 1979) 149-170, 171-185. Zbl0365.34017MR534546
  16. [16] L. Mazzi and V. Tabasso, On Stabilization of Time-Dependent Affine Control Systems. Rend. Sem. Mat. Univ. Politec. Torino 54 ( 1996) 53-66. Zbl0887.93055MR1490013
  17. [17] E.J. McShane, Integration, Princeton University Press ( 1947). Zbl0033.05302MR82536
  18. [18] B. Paden and S. Sastry, A Calculus for Computing Filippov's Differential Inclusion with Application to the Variable Structure Control of Robot Manipulators. IEEE Trans. Circuits and Systems Cas-34 ( 1997) 73-81. Zbl0632.34005MR871547
  19. [19] E.P. Ryan, An Integral Invariance Principle for Differential Inclusions with Applications in Adaptive Control. SIAM J. Control 36 ( 1998) 960-980. Zbl0911.93046MR1613893
  20. [20] D. Shevitz and B. Paden, Lyapunov Stability Theory of Nonsmooth Systems. IEEE Trans. Automat. Control 39 ( 1994) 1910-1914. Zbl0814.93049MR1293433
  21. [21] E.D. Sontag, A Lyapunov-like Characterization of Asymptotic Controllability. SIAM J. Control Optim. 21 ( 1983) 462-471. Zbl0513.93047MR696908
  22. [22] E.D. Sontag and H. Sussmann, Nonsmooth Control Lyapunov Functions, Proc. IEEE Conf. Decision and Control, New Orleans, IEEE Publications ( 1995) 2799-2805. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.