A new method to obtain decay rate estimates for dissipative systems
ESAIM: Control, Optimisation and Calculus of Variations (1999)
- Volume: 4, page 419-444
- ISSN: 1292-8119
Access Full Article
topHow to cite
topMartinez, Patrick. "A new method to obtain decay rate estimates for dissipative systems." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 419-444. <http://eudml.org/doc/90548>.
@article{Martinez1999,
author = {Martinez, Patrick},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {nonlinear stabilization; asymptotic behavior in zero and at infinity; nonlinear integral inequality},
language = {eng},
pages = {419-444},
publisher = {EDP Sciences},
title = {A new method to obtain decay rate estimates for dissipative systems},
url = {http://eudml.org/doc/90548},
volume = {4},
year = {1999},
}
TY - JOUR
AU - Martinez, Patrick
TI - A new method to obtain decay rate estimates for dissipative systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 419
EP - 444
LA - eng
KW - nonlinear stabilization; asymptotic behavior in zero and at infinity; nonlinear integral inequality
UR - http://eudml.org/doc/90548
ER -
References
top- [1] M. Aassila, On a quasilinear wave equation with a strong damping. Funkcial. Ekvac. 41 ( 199867-78. Zbl1140.35530MR1627361
- [2] V. Barbu, Analysis and control of nonlinear infinite dimensional systems. Academic Press, New York ( 1993). Zbl0776.49005MR1195128
- [3] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 ( 1992) 1024-1065. Zbl0786.93009MR1178650
- [4] A. Carpio, Sharp estimates of the energy for the solutions of some dissipative second order evolution equations. Potential Anal. 1 ( 1992) 265-289. Zbl0803.35090MR1245231
- [5] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures Appl. 58 ( 1979) 249-274. Zbl0414.35044MR544253
- [6] G. Chen and H. Wang, Asymptotic behavior of solutions of the one dimensional wave equation with a nonlinear boundary stabilizer. SIAM J. Control Optim. 27 ( 1989) 758-775. Zbl0682.93042MR1001918
- [7] F. Chentouh, Décroissance de l'énergie pour certaines équations hyperboliques semilinéaires dissipatives. Thèse de 3e cycle, Université Pierre et Marie Curie ( 1984).
- [8] F. Conrad, J. Leblond and J. P. Marmorat, Stabilization of second order evolution equations by unbounded nonlinear feedback in. Proc. of the Fifth IFAC Symposium on Control of Distributed Parameter Systems, Perpignan ( 1989) 101-116. Zbl0819.93040
- [9] F. Conrad and B. Rao, Decay of solutions of wave equations in a star-shaped domain with non-linear boundary feedback. Asymptotic Analysis 7 ( 1993) 159-177. Zbl0791.35011MR1226972
- [10] C.M. Dafermos, Asymptotic behavior of solutions of evolutions equationsNonlinear evolution equations, M.G. Crandall, Ed., Academic Press, New-York ( 1978) 103-123. Zbl0499.35015MR513814
- [11] A. Haraux, Comportement à l'infini pour une équation des ondes non linéaire dissipative. C. R. Acad. Sci. Paris Sér. A 287 ( 1978507-509. Zbl0396.35065
- [12] A. Haraux, Oscillations forcées pour certains systèmes dissipatifs non linéaires. Publication du Laboratoire d'Analyse Numérique No. 78010, Université Pierre et Marie Curie, Paris ( 1978).
- [13] A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems. Arch. Rat. Mech. Anal. 100 ( 1988) 191-206. Zbl0654.35070MR913963
- [14] M.A. Horn and I. Lasiecka, Global stabilization of a dynamic Von Karman plate with nonlinear boundary feedback. Appl. Math. Optim. 31 ( 1995) 57-84. Zbl0823.93046MR1296101
- [15] M.A. Horn and I. Lasiecka, Nonlinear boundary stabilization of parallelly connected Kirchhoff plates. Dynamics and Control 6 ( 1996) 263-292. Zbl0854.93119MR1397793
- [16] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Maths Pures Appl. 69 ( 1990) 33-54. Zbl0636.93064MR1054123
- [17] V. Komornik, On the nonlinear boundary stabilization of the wave equation. Chinese Ann. Math. Ser. B. 14 ( 1993153-164. Zbl0804.35065MR1233650
- [18] V. Komornik, Exact Controllability and Stabilization RAM: Research in Applied Mathematics. Masson, Paris; John Wiley, Ltd., Chichester ( 1994). Zbl0937.93003MR1359765
- [19] S. Kouémou Patcheu, On the decay of solutions of some semilinear hyperbolic problems. Panamer. Math. J. 6 ( 1996) 69-82. Zbl0860.35013MR1400369
- [20] J.E. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differential Equations 50 ( 1983163-182. Zbl0536.35043
- [21] J.E. Lagnese, Boundary stabilization of thin plates. SIAM Studies in Appl. Math., Philadelphia, 1989. Zbl0696.73034MR1061153
- [22] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. J. Diff. Integr. Eq. 6 ( 1993) 507-533. Zbl0803.35088MR1202555
- [23] I. Lasiecka, Uniform stabilizability of a full Von Karman System with nonlinear boundary feedback. SIAM J. Control Optim. 36 ( 1998) 1376-1422. Zbl0911.93036MR1627581
- [24] I. Lasiecka, Boundary stabilization of a 3-dimensional structural acoustic model. J. Math. Pures Appl. 78 ( 1999203-232. Zbl0927.35060MR1677665
- [25] J.L. Lions, Contrôlabilité exacte et stabilisation de systèmes distribués, Vol. 1, Masson, Paris ( 1988). Zbl0653.93002MR953547
- [26] W.-J. Liu and E. Zuazua, Decay rates for dissipative wave equation, preprint. Zbl0939.35126MR1765677
- [27] P. Martinez, Decay of solutions of the wave equation with a local highly degenerate dissipationAsymptotic Analysis 19 ( 1999) 1-17. Zbl0932.35025MR1674586
- [28] P. Martinez, A new method to obtain decay rate estimates for dissipative Systems with localized damping. Rev. Mat. Compl Madrid, to appear. Zbl0940.35034MR1698906
- [29] M. Nakao, Asymptotic stability of the bounded or almost periodic solution of the wave equation with a nonlinear dissipative term. J. Math. Anal. Appl. 58 ( 1977) 336-343. Zbl0347.35013MR437890
- [30] M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305 ( 1996) 403-417. Zbl0856.35084MR1397430
- [31] L.R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping. J. Differential Equations 145 ( 1998) 502-524. Zbl0916.35069MR1620983
- [32] J. Vancostenoble, Optimalité d'estimations d'énergie pour une équation des ondes amortie. C. R. Acad. Sci. Paris Sér. A, to appear. Zbl0931.35108
- [33] J. Vancostenoble and P. Martinez, Optimality of energy estimates for a damped wave equation with polynomial or non polynomial feedbacks, submitted. Zbl0984.35029
- [34] E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems. Asymptotic Analysis 1 ( 19881-28. Zbl0677.35069MR950012
- [35] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control and Optim. 28 ( 1990) 466-478. Zbl0695.93090MR1040470
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.